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Summary. — It is shown that the complementary aspect of high-energy
Regge behaviour and low-energy resonance saturation known as « duality »
from finite-energy sum rules can be advanced in a unifying direction.
The Regge parametrization of low-energy partial waves is deduced
reversing the path leading to asymptotic Regge behaviour in the crossed
channel by means of the Khuri-Jones representation. The P,; and §;;
waves in N’ scattering are analysed. They show evidence for a pattern
of trajectories characteristic for a model of oscillatory excitations.

1. - Introduction.

In Regge-pole theory the oscillatory band of resonances described by a
linear angular momentum (J) — (mass)*(s) relation is extended to interpolating,
unphysical values of the angular momentum.

N,.5.y.6 denote the four trajectories

a: JP=%, 5,8, ..,
/3: J? = %—y %—7 %—, 3
yi J7= %dy %—7 l2—_1 )
0: J7= %+7 %+7 l2l+’

{*) Schweizerisches Institut fiir Nuklearforschung, Hiittenstrasse 34, 8006 Ziirich.

(**) Aspirant NFWO (Belgium), on leave of absence from the University of Lenven,
Leuven.
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60 P. MINKOWSKI and F. HALZEN

Dispersion relations provide the necessary tool (*) to carry out the above
continuation in the s-channel scattering region corresponding to Fig. 1 a).

We try to present evidence here that the path to the backward-scattering
region in the #-channel (Fig. 1b): w— + oo, s << (m — p)?, m, u the nucleon, pion

, \
/4_ R /1
/' LN st
a) b)

Fig. 1. — Baryon Regge exchange a) in the s-channel of n~p scattering and 5) in the
u-channel of =*p scattering.

mass respectively) is reversible. It relates leading as well as nonleading asymp-
totic Regge contributions to corresponding particle families and vice versa.

Thus we assume that background terms (cunts, strongly decreasing contri-
butions to the amplitude) do not affect the physical parameters of resonances
on a given frajectory.

However, a conventional Regge pole « does not provide a suitable resonance
saturation model at low energies in the s-channel beecause of the following ob-
vious technical difficulties:

parity doubling,
incorrect threshold behaviour,

incorrect cut structure.

The latter two difficulties are coupled and can be overcome in many dif-
ferent ways. The most appealing one is known as the Khuri-Jones representa-
tion (2). Our purpose is to study the first difficulty in this context and to show
the power of the so obtained Regge amplitude describing in one low-energy
phase shifts and high-energy scattering in the erossed channel.

This twofold aspect of Regge exchange enables one to study the low-lying
trajectories in low-energy scattering in connection with the hypotheses of
danghter trajectories, dual models, ete.

We want to emphasize in this paper that the low-energy aspect does emerge
from wN° phase shifts. This opens the interesting possibility to parametrize
low-energy data by Regge parameters and eo ipso by resonance characteristics.

(*) M. FROISSART: Nuovo Cimento, 22, 191 (1961); Phys. Rev., 123, 1053 (1961); V.
N. GriBov: Zurn. Eksp. Teor. Fiz., 41, 677 (1961), English translation, Sov. Phys.
JETP, 14, 478 (1962).

(3) N. N. Kuvuri: Phys. Rev., 130, 429 (1963); E. JonEs: Lawrence Radiation La-
boratory Report TCRL-10700 (1963).
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The experimental situation in I =dJ =1 (J*= %i) N geattering provides
a testing ground for the above project (>4).

We take the following P,, and S, resonances to mark the beginning of two
corresponding series of parallel linear trajectories (N, N5) with separate and
independent equal spacings A,, A, in the Chew-Frautschi plot (3).

The above analysis also extends to the recurrences of the J=1 reso-
nances, i.e. to N’; (1688) and to a hypothetical recurrence on the S, trajectory
J\[’;_(2135). Further tests will thus be provided by an extension of =N phase-
shift analysis above 2 GeV which on the other hand will require a reconsidera-
tion of resonance phenomena at these energies (7).

In Sect. 2 we construct a Khuri-Regge exchange amplitude consistent with
general requirements and connect it to the low-energy P;,, S,; phases on the
one hand, to w*p high-energy backward scattering on the other hand.

In Sect. 3 the numerical analysis is discussed and the results are presented.

The former can proceed along different lines:

a) After fitting (de/ds),. ,_, at the available energies we have shown how
to determine the parameters of the Roper resonance from low-energy P,; phase
shifts (?).

b) In the simultaneous analysis of the MacDowell coupled P,,-S,, chan-
nels we fix the masses and widths of the resonances in Table I at their phys-
ical values and predict the phase shifts. A true prediction, however, would
imply the knowledge of mass and width of the hypothetical N’;:_(2135) recurrence
to determine an otherwise free parameter.

TasLe I. — Patterns of .N,, Ng trajeciories as observed in phase-shift analysis.
Ambignities in the elastic widths arise from crrors in both elasticity and total width (%).

Resonance J? Elastic width (MeV) Notation Trajectory funetion
N(938) it [g2/4m ~ 14.6] P, ap, = o+ o's
N'#(1420) e ~ 143 P, ap, =g+ a's — Ap
N*(1750) 3t ~175 P, ap, = op+ o' s —24,
N*(1535) 1 ~ 28 S, g, = oy + o's
N*(1700) 1 ~ 182 S, ag, = o+ o' s— Ay

(®) F. Harzex and P. MINkOwWSKI: Lett. Nuovo Cimento, 1, 789 (1969).

(*) L. DuraND: Invited paper presented at the Boulder Conference on High-Energy
Physics, August 1969.

(®) ParricLe Data Grour: Rev. Mod. Phys., 42, 87 (1970).

(") The newest results of the phase-shift analysis up to 2.8 GeV (%) seem to indicate the
presence of further excitations in Py, and 8, as well as Dy, (NF-(21357)). However,
a thorough analysis is needed to classify the loops into our pattern,

(®) R. Ayep, P. BareYrE and G. VILLET: Phys. Lett., 31 B, 598 (1970).
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¢) Finally we vary the resonance parameters allowing for errors in their
determination from phase-shift analysis within reasonable limits. This enables
us to reproduce the (0--350) MeV solution of ROPER et al. () to a high accu-
racy (mean deviation ~B59,) in the region (6--240)MeV pion laboratory
kinetic energy. We have chosen the phases of RoPER et al. (") because thig
analysis aims at maximal likelihood in the region of interest to us.

In the last Section we give some thought to MacDowell symmetry, the
oscillator models of Regge trajectories and the exponential behaviour of Regge
residues.

We hope to have demonstrated that it is worth-while to analyse low-energy
data with Regge parameters even more so if inelastic effects could be included.

The extension to other spins and isospins is straightforward.

2. — MacDowell symmetric Khuri amplitude without parity doublets.

As pointed out in the Introduction we want to construct an amplitude for
N> seattering corresponding to a summation of Regge exchange according to
the trajectories given in Table I and Fig. 2:

a0 %
(2.1) 4=7 s»\mm,\/

e .. N
LY // w N
/T ™

We restrict the discussion to the case of I = J =} exchanges:

(2.2a) o, =oay+a's—id,, «

Y ; P
- = oy + o' s —1id,, 1=0,1,2, ...

8i41
For backward w+p scattering (u - + oo, s < (m — u)?) we make the assump-
tion that A exchange is suppressed. This is justified by isospin coefficients
and by the fact that the m—p backward cross-section (pure A exchange) is ex-
perimentally an order of magnitude smaller than the n*p backward cross-section.
From the Argand diagrams of P,,-S,, we conclude that
(2.2b) Ap=24,~1.
This regularity originally gave the impulse to our analysis and it will be
given some thought in the last Section.

(*) L. D. RopER, R. M. WricHT and B. T. FeLD: Phys. Rev., 138, B 190 (1965).
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Fig. 2. — Chew-Frautschi plot emerging from I=J =1 resonances: —— P,; reso-
nances; —-+—--— 8;; resonances. 1) Nz+(1688), 2) N5-(2135), 3) N(938), 4) N°(1400),

5) N(1535), 6) N(1700), 7) N(1705).

We require the following properties for the amplitude A:
i) explicit MacDowell symmetry and absence of parity doublets (8);

ii) correct cut structure in the s, ¢, » plane and correct threshold be-
haviour;

(®) For a general discussion of this problem see e.g. H. HoGaasEN: Invited paper
presented at the Topical Conference on High-Energy Collisions of Hadrons, CERN
(Geneva, 1968).
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iii) display of the trajectory pattern according to Table I and desecription
of I=J = 1 resonances in the zero-width approximation;

iv) correct description of high-energy backward wtp scattering (u — oo,
$=10) by the leading nucleon trajectory (o).

The amplitude A contains information on the frajectory patternin two ways:

a) by i)-iii) its properties are related to low-energy phase shifts (%) after
partial-wave projection;

b) by iv) A is related to conventional analysis of asymptotic (high-energy)
scattering.

Whereas Regge-pole parametrization is in general accepted in case b) we
want to emphasize its importance for studying low-energy w.N° scattering.
Equation (2.1) provides a means to parametrize low-energy phase shifts with
physically relevant parameters.

The kinematics of I, = } =N scattering is described by

A =f,+ (P 0)(Bo)f.,

where P, §' represent unit vectors in the direction of centre-of-mass incoming
and outgoing nucleon momenta. The partial-wave amplitudes are defined
in the conventional way:

LW, 2) = X {EH(W) P 4(e) — (W) P, _y(2)}

(2.3) ,
(W, 2) = E {t7(W) Py3(2) — 65 (W) Py ()} -

MacDowell symmetry reads
(2.4) F(W,2) = —f.(— W, 2), or alternatively tH—W)=—1t(W).

We use the conventional notations z = cosfls, W =1/5. are the partial-
wave amplitudes distingnishing the possibilities j =1 4- 1 due to nucleon spin.
They are given by

+
ti

+1
1 =4[ Qalis Py + o Py
-1

(2.5)

+1

7 =4[ @t Pas+ fo Pry)

(*) Low-energy region means threshold region here where the phase shifts are small:
Oz y=8in 6, , ~tg 6y,
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The P, states correspond to I =1,3,... and are on positive-parity tra-
jectories coupling t7, the 8, states correspond to I =0, 2, ... or negative pa-
rity, they couple 7. Both trajectories have positive signature. Performing
a conventional Sommerfeld-Watson transformation on (2.3) we obtain neg-
lecting the background integral

4

S (o, —3) T

fr=—2 tonlttsny W) Pay 14

JT
+ 2 e oteny W) Poy oy g
n sm [24
(2.6) i o
fo=— ; Tp,(%p,, W)P"‘PnH mﬂ. ])
, ey A
+ 2 Ty W) Pt o 40
with

75, (%5 [8], W) = residue t7(W),

.laapﬂ(s)

t's,,,(o‘s,,,[s]y W) = residue t;"( wy.

Jag, (s)

Positive signature of P,, 8, is incorporated by the replacements

!

P y(2) > 3 [P, 4 (2) + Ph(— )],
P, () > [P, _4(2) — P._,(—2)].

Relations {2.4) indueed by MacDowell symmetry would require

%p,(8) = %4, (8)

and
Tp %,y — W) = —7, (¢, W).

As is manifest in Table I and Fig. 2, however, the physical P, and 8, are
far from being parity doubled. We enforce manifest MacDowell symmetry
in two steps. We first introduce the MacDowell reflected parts of both P,
and §, trajectories so that the symmetry of f,, f, is explicit and then prevent
the reflected trajectories from materializing.

Thus
R b3
2.0 f,= —g {Tp"(lxpﬂ, W)P“P"Hm +
1
+ 7p,(0p,, — W) P "‘Pn QW ])}
T T
w0t W o i ) e T P P )

5 — Il Nuovo Cimento A.
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f. is obtained by the replacement

P,—8,, Tp, <> Ty, -
In order to prevent the parity-doubled trajectories from materializing, the
relevant residue functions must develop an organized set of zeros:

Tp (0, — W)=0 for o, (W2) =1+ 20,

Ty (%5, — W) =0 for as (W2) = § + 24,

In Regge fits it was customary to introduce the first few zeros of 7 explic-
itly and to neglect all other conditions (?).

One of us discussed the class of functions consistent with general require-
ments achieving the above systematic cancellation (1°).

Two possible forms for the functions for P,, S, are

-

i () e

2J + }—oq)}
(2.8) (o W)= W=(*—+‘oz—l)
[ = W 1(W\ W
1o e s ()~ eem

An alternative mechanism to avoid parity doublets to appear as physical
particles has recently been diseussed by CArLITZ and KISLINGER (!1).

We now work towards correct threshold behaviour and correct left- and
right-hand cuts (¥ —lh.c., t —r.h.c.).

Firgt the residue functions are redefined:

B E—m qz ap,—% W \3

Tp, = oW (E)) [];I (1 + (T’V_;n) ):|QPn(W) ’
_E+m ¢2\*smt W7_3

Ton = oW (Ez)) [1:[ (1 + (W.) )} 0sn(W) .

Here ¢ is the centre-of-mass momentum, ¢, is a unit momentum which will

(*) V. BarGeEr and C. CLINE: Phys. Rev., 155, 1792 (1967).
() P. Minkowsk1: Lett. Nuovo Cimento, 3, 503 (1970).
(1) R. Carrirz and M. KisLINGER: Phys. Rev. Lett., 24, 186 (1970).
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later be chosen 1 GeV/e. The particle masses are given by

Wi (2J+%+ (n,—l)AP—az)%,

o

o (20 E 4 (m—1) Ag—ad\?
WSm: OC’ ’
nym=12.., J,J'=012, ...

(n, m) label trajectories, (J, J') recurrences.
In (2.9) o(W) is the core of the residue which accompanies the asymptotic
expansion of Legendre functions

eh AR E |

The amplitudes inherit the cuts from the Legendre functions beginning
at z=41 and extending to 4-oco. This is only asymptotically correct (s—oo).
The lower ends should be shifted:

2
r.h.c.: i= 11— 1+2qiz=cosh§1,

s—m2—2u?

20 = coshé, .

Lh.c.: —z=41—-—1-+

A prescription to achieve this has been given by KHURI (%):
P.(z) —Pi(),

P (—2) > Pi(—2),

sinmee 1 1 fdm exp [(x + 3)z]sinhz

7 2a+14/2 (cosh @ 4- 2)t
&

P+ 2) = —

Upper and lower signs refer to ¢ = 1, 2 respectively. For # — -+ oo, P, be-
have as P (4 2} respectively (12).

(*¥) For a short description of the Khuri-Jones representation see, e.g., P. D. B. CoL-
LiNs and E. J. 8Quires: Regge Poles in Particle Physics, Springer Tracts in Modern
Physics, Vol. 45 (Heidelberg, New York, 1968).
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Let us follow now the procedure for a typical term, say Py, i.e. the nucleon,

T

(e, — [P;ig + Poy(— )]Wf])’

43

_ X g o T
T( [‘P 3 Pa-—i‘( Z)] sin (75[(1— %]) ’

f. is given by MacDowell symmetry.
Using (2.5) the partial-wave projections take the simple form

Fi
J—a’
F5f = t[exp[(a—J)&] + exp[(@—J)&]],

and the final partial-wave amplitudes read

ity = t(e, W)

ngfz
ETP,.(“P,.! W)J——O::a ’
(2.10) GWy={ Pt
_ . J, TS,
; Tsm(“,sm, W) J——- msm
W) =—1;(— W), J=% % %, ...,

with 7, , 7, given by (2.9).

3. — Interpretation of the Khuri amplitude and numerical evaluation.

We now want to emphasize the two agpects of the =N° amplitude constructed
in the preceding Section: its low-energy aspect or relation to the elastic coup-
lings of the particles on the trajectories and its high-energy aspect or relation
to wp backward scattering.

3'1. Low energy. — We believe the partial-wave projections (2.10) to be
valid in the low-energy region. They contain the poles from particles on the
trajectories in the narrow-width approximation in the spirit of the Khuri-
Jones representation.

As we have no control over inelasticities ;] we identify (2.10) with

T Ped
(3'1) t" - 22q ("7: exp [21/61] 1)

for 67 ~ sind; ~ tg 67, which implies #7 ~ 1.
For higher energies (2.10) is assumed to represent K-matrix elements

(3.2) = ;—tgdf.
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Thus

(3.3) residue t; =
W—)Wgﬂ

’

’ Py
245 o

n

(T3)r, , (J+ <n—1)AP—a2)*

Q;.. is the e.m. momentum corresponding to the c.m. energy W;”.

The above does not mean at all that inelagtic effects are neglected. We
describe the low-energy part of the scatfering amplitude without assumption
on extrapolations once we accept (2.10).

The following ansatz is made for the free Regge residues o(W) in (2.9):

(3.4) QP,,(W) = a5 0,(W), Qs,,,(W) = bM'QS(W) y
with
QP,S(W) = exp [%,s(W)] .

0p, 05 ale supposed to govern universally the contributions from all P,, 8,.
The relative coupling strengths are given by the proportionality constants a,,
b,, which are proportional to the elastic widths of the J = { particles on P,
or 8, respectively.

The exponential behaviour of g, (W) will be discussed in the next Section.
It is a generally accepted procedure to parametrize the smooth core of the
Regge residue by g, ,=exp[C,W:— C, W].

The a,, b, are readily connected to particle couplings to nN° combining
(2.10) and (3.13). To illustrate this we can write for instance the nucleon con-
tribution to P,,

E—m

-~ m lar
_ — W \3 F\ert a terms regu
t — ”7 N 152 .
4 oW QP( ) {].;[ (1 + (WIJ)I) )} (q‘z)) F%,MJ‘ J tp, + ot _

3°2. High energy. — In the spirit of conventional Regge asymptotics (2.10)
describes mtp backward scattering for s =0, u—~co. We neglect the 7 =3
contribution. As we fit only in the strict s = 0 direction cuts can safely be
ignored.

The amplitudes f,, f, given in (2.3) are Reggeized using the Mandelstam
prescription (1314}

tg moc
7

P,(z) —

Q—a—l (Z) .

(1) 8. MANDELSTAM: Ann. of Phys., 19, 254 (1962).
(*) M. Gerr-Ma~nN, M. L. GOLDBERGER, F. E. Low, E. MarRxX and F. ZACHARIASEN:
Phys. Rev., 133, B 145 (1964).
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The calculation of the limit s = 0, # — oo is straightforward and we obtain

fo 55 Ta(W)ea 3[(22)%7F 4 (— 22)*7H] + 70(— W) 0ay 3[(22)7F — (— 22)21]
(3.5) |

“zaPL(s) and cazzﬁw

I—a) ’

(3.6) 7.(W) ~ 2™

2\ a—%
a0 OW Q-P(W: O)al (%) ’ fl(W) = _fz('—— W) .

0

In their present form (3.5) and (3.6) contain kinematical singularities due
to unequal-mass kinematics and the MacDowell symmetry term.

We suppose these to be cancelled by daughter trajectories that are kine-
matically induced (**) in a similar way as the MacDowell reflected trajectories.
They thus do not materialize into particles.

3'3. Results. — For numerical calculation the parity doublet erasing funec-
tions can be approximated by their lowest dynamical zeros and we made the
working hypothesis that ¢, (W) are quadratic functions:

(3.7 054(W) = exp [Cf‘s. W2 — Og'S'W] )

We started fitting (do/ds), expressed by f;, f, given in (3.5) to the backward
m+tp measurements at 3.55, 5.9, 8, 9.9, 13.7, 17.1 GeV/c (*) and obtained a sa-
tisfactory fit for

(3.8) 0 = €xp [— C,(W —m)?].

The numerical values for a,, C, so obtained are consistent with the w.\
coupling constant (directly related to a,) and the elastic width of the nucleon
recurrence N'j,(1688).

For o, (W) we assume that the mean energy is equivalently given by the
lowest resonance

(3.9) 05 = exp [— C,(W —m,)7].

(%) D. Z. FREEDMAN and J. M. WaNG: Phys. Rev. Lett., 17, 569 (1966).

(*%) For a review of the backward =N° data see, e.g., M. DERRICK: Backward peaks,
review talk presented at the T'opical Conference on High-Energy Collisions of Hadrons,
CERN (Geneva, 1968), and ref. (*7).

(*) F. HaLzeN, A. KuMAR, A. D. MARTIN and C. MICHAEL: to be published in Phys.
Lett., preprint TH-1155 CERN.
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Feeding in 4,, 4, as obtained from the Chew-Frautschi plot and the dif-
ferent widths we predict P,;, S,, phase shifts in the low-energy region (pion
laboratory kinetic energy range (6--240) MeV) as a function of one parame-
ter O,. This parameter is related to the width of the first recurrence on the
8, trajectory J\(’;-(2135).

In practice we varied the resonance parameters within narrow limits and
determined €, looking for a best approximation to the P,,-S;, phase shifts
of ROPER et al. (7).

The existence of a sharp minimum in 2, all parameters lying inside their
prescribed ranges, proves the significant dependence of phase shifts on our
parametrization.

This is not obvious if we recall that the low-energy region preseribed
by (3.1) is still a considerable distance away from the lowest-resonance position.

3'4. Comments. — One can turn this procedure around and extract resovance
parameters from low-energy wnN° data using the above parametrization. This
was suceessfully done for the Roper resonance in ref. (%) by fitting a simplified
P,, amplitude to the phase shifts of Lovelace.

The scattering lengths a, ,a, are readily calculated. Since our solution
coincides with the (0--350) MeV solution of ROPER et al. () (see Table II)
our results correspond to their analysis:

a,,=—0.098, a, =0.180.

Py

TABLE II. — Results of the present analysis for the Py, S, waves, as compared with the
(0-350) MeV solutions of ROPER et al. (7). T,: pion laboratory kinetic energy.

T, 0p,,(0) 0p,,(0) d5,,(0) 05, (0)
RoPER (7) present analysis RoPER (7) present analysis

6 —0.082 — 0.086 2.599 2.549
20 — 0.429 —0.432 4.414 4.360
31 —0.755 —0.835 5.295 5.443
58 —1.549 —1.573 6.780 6.860
98 —2.249 — 2.139 8.235 8.243
120 — 2,189 —2.035 8.855 8.838
140 —1.762 — 1.580 9.356 9.351
170 —0.318 —0.322 10.036 9.979
194 1.643 1.707 10.542 10.539
200 2.257 2.105 10.665 10.623
220 4.680 4.559 11.070 11.048

240 7.703 7.996 11.471 11.483
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Looking at the numerieal analysis for the detailed structure of (2.10) build-
ing up the P,; and §,, waves from additive contributions of Py, P,, P;, S;, 8,
(see Fig 3, 4) we conclude that the 8,, resonances are not reflected to an ap-
preciable amount in the P,, channel (Fig. 3), whereas both P, and §,, particles

combine in building up the 8,; wave (Fig. 4).

&

30F

&(degrees)

i i l l l 9l8 l T}.O 1l70 1£’4l’ 2£0 l

p— 0 1
3 40 80 120 160 200 240
T (MeV)

Fig. 3. — Contributions of Py, P,, P;, 8;, 8, to the P;; wave separately (full lines) and
jointly (dot-dashed lines). The deviation from the results of RoPER et al. (*) are indicated

by 4 where this is possible on the given scale.
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5(degrees)

r 5
—2F p1
6 20 3 58 98 140 170 194 220
L 1 L L | H 1 1 | 1 { L
0 40 80 120 160 200 240
T.(MeV)

Fig. 4. — Contributions of P,, P,, P,, 8;, S, to the 8,, wave separately (full lines) and

jointly (dot-dashed line). 8, clearly dominates.
of ROPER el al. (?) are indicated as in Fig. 3.

The deviations irom the results
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If one does not accept the ad hoc parametrization (3.9) of p,, one can also
vary mg and relate its numerical value to widths of recurrences. The recur-
rence of §;, N;-(2135), is predicted to couple weakly to N’ from (3.9). Further
information on phase shifts at higher energies will provide a tool to study the
lower-lying trajectories in a more refined way.

TasrLe III. — Masses and elastic widths of the lowest resonances on the Py, P,, P;, 8y, S,
trajectories obtained from low-energy analysis compared to the results of phase-shift analysis
and experiments. The solution given in Table IT corresponds to the following parameters
for the relevant resonances.

Resonance Mass (MeV) Elastic width (MeV)

Result Values from Result Values from
phase-shift phase-shift
analysis and analysis and
experiments (%) experiments (5)

N(938) 938 938 9*/dn = 14.6 g*/An = 14.6

(input) (input)

N(1400) (3-18) 1387 14351505 171 120-=-240
N(1750) 1722 1750 = 1860 3 980 =-150
N(1535) 1535 1500 +1600 20 16 53

(input)

N(1700) 1712 1605 =-1765 100 70 --280

The displacements in angular momentum of the P,, 8; trajectories are
4,=094, A, =048,
The two exponential cores of the residue functions g,, o, are given by

0, = exp [— O (W —m)?], 05 = exp [— Oy(W — my555)°]

C,=0.95, C, = 6.00 .

(*8) F. Harzen and P. MingOwsSKI: Nucl. Phys., 14 B, 522 (1969).
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4. - General remarks.

In this Section we want to make a few final remarks connected with
a) parity doubling,
b) the phenomenologically observed pattern of Regge trajectories,
¢) exponential behaviour of Regge residues.

a) The solution that CARLITZ and KIiSLINGER (!!) propose to eliminate parity
doublets moves the doubled pole to the unphysical sheet, introducing a square-
root cut in the J-plane. A typical r-function in this case becomes ((2.6), (2.7))

E—m, , ,W4+VJ—q
(o)}

J—oc\/J—ozo

o=0o'8+ e, T, — W)y =10

(4.1) 71(a, W) = residue

2y ~% 42
J—>x 87IW (q ) g

J?

and

7 (0, W) = —71(a, W), Re W=>0.

I, IT refer to the physical and unphysical J-sheets respectively. We prefer,
however, 1o use the mechanism corresponding to (2.8) as (4.1) suffers (espec-
ially in the I =} case) from not being unitary as shown in ref. (1*). Espec-
ially extrapolation between scattering and particle region for the nuneleon
seems unreliable with (4.1), while our results here prove that it is qualitatively
right using (2.8). Precisely this extrapolation is relevant to our calculations.

b) Both the Chew-Frautschi plot as well as our low-energy analysis show
that isobaric Regge trajectories in the spirit of parallel linear trajectories fol-
low a pattern

(4.2) o(s) , a(s) — A, o(s) —24,

For the leading N, trajectory 4 ~1 for the N,(1535) trajectory A ~ }.
In the development of our analysis its motive has gradually changed to be-
come mainly phenomenological search. However, for one of us the outset
was to show that = N° scattering provides evidence for an oscillatory excitation
spectrum generating at the same time SU, multiplets and Regge trajectories in
families of isobars (*°) according to (4.2). A, the shift in angular momentum,
is related to the two characteristic vibration frequencies w,, w of timelike and

(%) P. MiNkowskI: University of Leuven preprint (unpublished).
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spacelike modes respectively
Wy N
(4.3) A=— arbitrary .

Since linear Regge trajectories unmistakably point towards the harmonie
potential it is no surprise that the factorized N-point Veneziano amplitude ()
shows the excitation spectrum of oscillators (4.2) with the restriction 4 = 1.
The degeneracies of the two models do not coincide. For the dual amplitude
it is in principle possible that a set of Ward identities for the vertex functions
redueces the maximal degeneracy.

¢) In the preceding Section the exponential form of the residue function
is crucial. This is another independent evidence for exponential behaviour
of the smooth core of Regge residues. Although this parametrization has been
extensively used its crucial aspect in fitting asymptotic cross-section has been
pointed out only in ref. (). In the preceding Sections we tacitly assumed
that u, is approximately 1 (GeV)? like in the Veneziano approach.

A term exp [C-8] in the residue is essentially a way to vary %, and in a
Veneziano or 1 (GeV)? normalization we expect C~0. It has been shown that
if an extrapolation between scattering and particle region makes sense this
condition is not satisfied. From our low-energy point of view we would essen-
tially sum Born terms in the amplitude (2.1) were it not for the structure intro-
duced by Regge residues.

We tried instead to leave the residues constant in order to check the signii-
icance of our parameters to describe low-energy data. The phase shifts were
not even qualitatively reproduced.

As a conclusion one might say that our calculation supports the hypothesis
of oscillatory motion and independently suggests the interesting possibility
to study or even fit low-energy scattering data with Regge parameters. To go
beyond our simple calculation it is however crucial to incorporate inelastic
channels. Besides this the above analysis provides a tool to study the prop-
erties of low-lying trajectories uwsually hidden from Regge asymptotics.

%k ok
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® RIASSUNTO ()

Si dimostra che si pud sviluppare in una direzione unificata I’aspetto di complementarita
del comportamento di Regge alle alte energie e la saturazione delle risonanze a bassa
energia nota come « dualita » dalle regole di somma di energia finita. Si deduce la para-
metrizzazione di Regge delle onde parziali alle basse energie invertendo la traiettoria
che porta al comportamento di Regge asintotico nel canale incrociato tramite la rap-
presentazione di Khuri-Jones. Si analizzano le onde P;; e 8, nello scattering m.N.
Si ottengono cosi indicazioni per un tipo di traiettorie caratteristiche per un modello
di eccitazioni oscillatorie.

(*} Traduzione a cura della Redazione.

ITapamerpusamus Pense nys nN° paccesiHusi NpH HM3KHK JHeprasx.

Pestome (*). — TlokasbiBaeTcs, 4TO [OIOJNHWTENbHBIH aclekT NoseneHWs Pemke npm
BBICOKMX OHEPIHAX U HACBIIICHHE DPe3OHAHCOB IPH HHM3KHX 3JHEPIUAX, H3BECTHOE KakK
« IyaJIbHOCTB », MOTYT OBITH Pa3BHTHI C €IUHON TOYKM 3PEHHUSA, UCXOAA M3 IPAaBHI CYMM
NP KOHEYHOH >Heprum. BeiBomuTcst mapaMerpusauusa Pemxe A1s NapuyaIbHBIX BOJH
IIPH HU3KHAX SHEPIHAX, NOCPEACTBOM OGpAIIEHYs Iy TH, IPUBOSIIETO K ACHMIOTOTHYECKOMY
moBefieHmio Peke B TIEPEKPeCTHOM KaHAJle, C HCIIONB30BAHHEM IpeACTABIEHHS XYpH-
Woneca. Amammsupyrotcs P, u S, BOIHEL B paccesHuMH. OHH HAfOT MOATBEPXKICHAE
st GOpMBI TPAeKTOPHHM, XapaKTEePHOU IS MOZENM OCUMIIATOPHBIX BO3OYKISHHMI.

(*) Iepesedeno pedaxyueil.



