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Abstract
The hypothesis is investigated that tﬁefﬁ?iitkhdﬁﬁiintéiééﬁibﬁs;éfe:ﬁéﬁifééféfioﬁs
of a gauge theory on a manifold )72 involving a set of space-like coordinates
‘beyond space-time. The gauge group consists of coordinate transformations osz?
The scale invariant action couples a family of scalar fields ®, to the
curvature scalar in ;%7 :
M,/ S | ) s AR

AN -.—fc/ X;'/j//Z S ‘7‘;%{/23—«2%‘,5‘;; 7,

S;hq generates a spontaneous ground state solution with constant curvature

with respect to the interval coordinates of the order of Planck's length Tor

which S7ﬂ. = 0.
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Strong-, electromagnetic- and weak interactions (called charged inter-
actions inrthe following) are believed to be described by universal gauge
couplings based on a local gauge group G 1). The local structure of G commects
the charge like gauges with the space-time gauges and therefore charged with

gravitational interactions.

Pursuing the ideas expressed in ref (2) all mass scales, in particular
Newton's constant arise spontaneously 3) and/or through the regularization

of quantum fluctuations.4).

An action involving expliciﬁ mass scales shall be understood as a low
energy effective action, to be replaced by a (classically) scale invariant

action inducing spontaneous generation of mass scales.

This situation prevails with respect to the weak- and associated inter-

cations.
We study the following hypotheses:

i) Charge like and space-time gauges are low energy 0342h1pla = 1.22-10196eV

nck

manifestations of common geometric origin.

ii) The unified family of gauges correspords to coordinate transformations of

a manifold 77? involving M > 4 dimensions.

1ii) The ground state shows a spontaneous asymmetry: four dimensional space-

time remains flat whereas an M - 4 dimensional subspace acquires constant

FN1)

curvature the curvature radius being essentially Planck's length

(1p, = 1.61 - 107> cm).

iv) The action governing the interactions (in 72?) is scale invariant and
thus involves a family of scalar (hermitian) fields %/qx:"/j"‘;’t (h> 2’)

in the following combination with the curvature scalar (inj”? )



S+ Sy [6@)3, +‘a‘j"gc>ﬁ % g™/

(T .= c =1 units are chosen)

In eq. (1) Q) denotes a quadratic function of '% ‘subject to restrictions

unposed by iii).

We denote coordinates in 77 by xA, A=0, 1,...M - 1; space-time coordinates
by x™ s /‘»= A= 0,1,2,3 and the remaining internal coordinates by
2, r=A-3=1,2, ...,0 =M- 4.

The Vector-index set // { shall similarly be devided

[ g For A=123

/n] =
: / I é)— 74:3‘//"} }"‘—‘%""'/D

The signature of the metric AR shall be

2 5 JAhi, Jaca, - Jagd;
DO> O (<4 , i Z O
j / 2'4“1 4(, ;'4,',_ A, - jA,'z Alm (2)
9’4‘}" A, Jan b, 1A A |
for all subsets (A.1 -——- Ai ), m=1, ..., M- 1 of space like indices
4 m .
_AiK =1,,..., M- 1.
Eq. (2) ‘J"mplies that there exists a symmetric M-bein such that
- z
JAR = Vur 7" Vpse , Vap=Yr4
7 ‘ .
fe.f_« -7 O ) 3
? - ‘74,2'/\2‘(‘:0/7/“*//1//'7

-1
o T ’
-7
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i MATLET ontains all fields beyond (7:‘ and g,n. We note that scale in-

variance restricts of matter (for M~>4) to contain only kinetic energy

terms in the limit of vanishing curvature in /72 . In particular of matter
M .

contains a family of 2/;“7— component fermions ‘%/S); Y} =1,... n(%)

denoting different types of fermions /,;:’ ] is the largest integer < %.4

_ w(#) . ?
7, = > % v P )
% p=v (F ) IR Z’q C/L>
T iy o
In eq. (4) X/e denote 2~ x 2°° matrices forming the Clifford-Dirac

algebra in M dimensions

’:"/ 'z, ,yj/__._ Zec 7 B

Dy . denote the covariant derivative T

2, ¢ 2/;)A * 3/‘ C;’e[éj?Z;j?r] 7%
2fes] = -*7/— e, ¥e/ (6)
CA/‘M]:f/‘% P/DAU29+ZJ;Q ?cf_vpr

V.4 / Br’ - D 7
74 =3 ] /’C)Ajz"a?“)’bjz?%' B’ /AP
We are looking for a static solution to the Euler-Lagrange equations |

generated by S with all fields composing O{matter vanishing ¢ _ _
. _- - .\/ v / cz
TS 94%92%7‘;“;42/ f@f%%

Gfe)= L % Gup 9,

(7)
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In eq. (7) ZJ denotes the Laplace—Beltrami operator in 772

Y AB
g‘f///jﬁ—/‘ 4 //77"9‘?

The Ansatz corresponding to flat spacé—:tgm'e and constant curvature in the

internal space ? (? "J e, 99) shall be:

D/‘* (6’ ';0.) Dj‘ y"’g:o

Rparrac7 =0 ;7 Do Raagfan] =05 9 4uvr=1-7

(8)
?/7,27/2?7 : Riemann tensor in. m .
Eq. (8) implies
' — . /
Rpa=0 Rez = == 904 R © ™
We can integrate for g A to obtain
7
(¢} .
= = - 1 v * ’ —_—
jv/ ?/AV“ o _11 , jﬁr—o (10)

The first equation in (7) yields two equations, one each for (AB) = ( M V)

and (AB) = (rs):

(48)=(-) i Q)2 + 20 Ql)==L 377D % 0 %
(4?):(”‘)-' Q@}//?fz‘_;/jfi‘ ?Zéfzt‘/rf[_/) Qff) =

/

- 5 I e, 3%9142/_’0?“‘;0Y1)yc) v

[7aaC 4 o X

(11)




-5 -

Multiplying the second equation in (11) by gSt one obtains

/ZP@)~/?'f§4;rf %% ny; 7p__2?).;/»2)£769@/=o (12)

Comblnmg eq. (11) and (12] we have
& @) =

>R () + j” 5, % O

o 3
JSZ o (13)

Eq (13) yields a significant result;for the solutions in question the

actlon of eq. (1) vanishes.

The Ansatz of eq. (8) renders the internal space 9 a symmetric space %)
i.e. 2 corresponds to a pair G, H where G is a Lie group which we identify
with the (global) charge like gauge group of strong- eletromagnetic and weak
interactions, H is a subgroup of G equlvalent to the stability group of an

arbltrary point z & 2) under the motions induced by G:

:6/75/ , f/):g/,;,,,@-—c//m# (14)

We choose R positive. This corresponds to a compact crroup G and a compact

spaceo? (with respect to the metric j‘,

Egs. (8) and (10) reduce the Laplace—Beltami operator in 772 to the

corresponding (compact) operator in 2 . As a consequence eq. (13) implies

& (%) = coustau? (0+ D) - as)




Excluding the physically uninteresting possiblity that the quadratic

form.Qa()3 is degenerate, the second equation in (7) and (11) imply

(16)

4792:-@/?)5’,’() OR>0

Hence %i are (scalar) spherical functions on 227 transforming

according to a nontrivial (real) unitary representation of G:

%, (:—2 ‘E?;> = :;ZZ{I3(22:> ?i; (E;,) ) % f =7 ) "> 4
D) D@, -Diaa)y; DerDa =7

17)
a, e,e, G

From eq. (17) we deduce that eq. (15) is valid

@@ - L cp T w@e (2)- (Mz@mﬁy

Furthermore eq. (13) is verlfled by the 1dent1ty

£ G ) s 5 )_, =0 [ g gk

-%0%‘;

2 &%) | | G




~ It remains to show that

/ / . '
5 O(F) K Gz #F A% X8 =0 w

D.r 55 sz- 9& "' 1s proportional to et because the metric tensor is the
unique tensor spherical function not depending on further representation in-
dices with respect to G. This proves eq. (19) N4); 8), 9, 10).

It was noted in ref. 8), 9) that the metric

Jaz = [ (20)

where s is the metric on the symmetric space 2 is not the most genera1 metric
compatible with the internal structure of o@ . One can allow spacetime dependent
local coordinate transformations on@ , generated by group elements a(x‘ﬁ &G

depending in an arbitrary way on x ""(/k = 0,1,2,3).

The general metric involves the gauge fields of the local gauge group
G(x!" : Wf, f=1,...., S .= dim G/and the Killing vector fields generated by
, I’
the motions of G in l? :

}QGG)' a: 2 —D>a,.2 > 777"(&)2)//»:4,~-~-,o(
‘ (21)
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Infinitesimal Ja:a-= ;_'_f I £ correspond to a basis in the Lie algebra of G |

T [T T [=une 7, ‘
_74) / or/ /;_:oi/—-/fs Cd)qyly (22)
: structure constants of G.

C"Pr

The Killing vectors on 2 are glven by

(23 T)

A;é): ”.577 Q‘? ’?)
, D sf s

=0

s T . ‘ 3
The Killing vectors h £ transform as vector fields under coordinate trans-
formations on ED , they are vector spherlcal functions on:/> Under the action

of G on 2 they transform in the followmq way: .
L7 G 2) =¥ (a,2) (o ]y o

In eq. (24) 5&2 denotes the .Jacobian of the coordinate transformation

Z—>a « 7 :

k.r (a/’?) - .b 77—"”(4./ :2)

Sy (25)

(#7) %5 Gz)= %, (a7, a2)

Ad(a) denotes the adjdint representation of G by real, orthogonal matrices.

The generalized metric is of the form
) i s <
(7‘4238/,(’4@/( :?Vc/x’“é/x'/—,ﬁj,r o $re/ S
/A
'C/fk:'f%/k(x ?)c/xh

b/; = }VP JCC\’ )A é ' (26),8):?), 10), FNS)
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Gauge invariance determines the transformation properties of Wf under

a local gauge transformation a(x): 4
aGr: W & L fi@] W () -
ﬁ [ % a” i’)) 4

and for infinitesimal a(x) = £ (x):

h’l ’ .
F(}—’> N () [() fmwmf%”/
(27b)
The symbol @&9) 2 a X /) in eq. (27a) can be obtained from any

linear representation of G:

D G ). D) fak)d 4~ v) . (D)
2@—:2‘): A + s":z},/@) | (28)
The scalar curvature R in )/} contains the gauge covariant field strengths

WE = W - e WUHT e
/

(27a)

in the characteristic combination

‘wl / G
-2 2
4 (Zg‘v p’ 4 7 ) / ()jff@)4 2
(30) '
Effec‘tive‘actions in four dimensions result from integrating appropriate

approximations to S in ed (1) over 0? . In order to do this we 1ntroduce the

dlmensmnless (angular) coordinates on D

Z /;?_—271" —_— EDZ:”/?Aj

402 = ”’;‘—i‘ Pazzr r!//j\/‘ais (31).

/—_‘_—/
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45;2 has universal eigenvalues on ;Z) which depend only on the structural

invariants of G and H. The quadratic Casimir operator

o S 7, 7, (32)

F
is normalized by the structure constants’ ,C:/%EV“g in eq. (22)
() » 'y
- _ D = A A
C@ - 4 f' Dz,g- A Fa FEl -7 02 (33)

kl > 0 and in particular Q are structural constants of G, H. Only for
the correct discrete set of values of Q spontaneous curvature can arise. We

conclude
Q=10(01)

unless the number of scalar fields becomes very large.

From (33) it follows

Furthermore 7 |
- 2 : .
/d% V) =4 -4 /4"?) (34)

: structural constant of G, H.

k2 :

Thus we obtain the effective action of the vector bosons:
- (w) | £
= /66y 277244 ] [ W)
‘Sse;f;f -7 2 //155 (E;L) Z I A xé);;7 o x ;A/fv W
’ ‘ v - (35

Besides R (or L) there exists a seéond-spontaneous constant determining
" the normalization of the spherical functions 9§ > which due to the homogeneity

of the equations of motion with respect to % remains arbitrary in the absence

of quantum effects. We set
: - s




/&/Zg //?/ sésé = (L(jz | e

N: second spontaneous parameter besides R.
Eq. (36) implies

~Q£?) B 47¢ // K Afﬁvi/ .

o)< 280 2

2 &
In eq. (36) &ch denotes the coupling constant of the charge like gauge

- group G. C(Z) (- ¥ ) is the value of the quadratic Casimir operator for the

representation of G formed by 93

- Shifting the fields cﬁ, 24 R by the above solution in the ground state
~ 1 o~ N
Y= Yu=%t%% ; Jaz ™ Jaz=Jaz * Jaz ©B

with cf’,,z and AR denoting the ground state field conflouratlon/we observe that

1
R generates a mass term (in four dmensmns) for the scalars 9’ (with 3 (/ =0
M (9{.1): Z___Q_ ' (39)

Finally Newton's constant is given by

//‘éfé})*/ [ (; Ci?@")— @ (40)

L. 242

Y= Pr 6y =




-12 -

From eq. (37) we infer

[/ 200) (Le3) = 22 e

au el

= O (fPeaucA/

We note that the compact structure of ;Z) and G (R 2 0) imply that
Newton's constant (in our interpretationgis positive i.e. that gravity is

attractive.
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Footnotes

FN1)

N2)

FN3)

FN4)

- FN5)

FN6)

The intrinsic connection of Riemannian spaces with constant curvature

D #7azy/en7 =€

with the motions induced by a Lie transformation group has been demonstrated

by E. Cartan 5).

The unique structure of the scale iﬁvariant coupling Q(¥).-R (in 4 dimensions)

6)

has been noted by F. Giirsey in discussing Mach's principle. It has been

7)

to construct a conserved energy momentum tensor for scalars finite under

used (with an unphysical sign) by C. Callan, S. Coleman and R. Jackiw

renormalization.

For simplicity we consider the case where :? is irreducible i.e. cannot be
decomnosed.lnto a a direct product of mutually orthogonal subspaces each

one with constant curvature scalar.

8)

G = Ul(e.m.) in 5 dimensions is due to  Th. Kaluza and 0. Klein 9).

The method sketched here is due to H. Léutwyler, who presented it as
part of a series of sgminars on gauge theories at the University of.Bern
(1977). Even thqﬁgh it is believed that the géometric interpretation

of vector gauge fields is widely known I feel that his outstanding.con-

tribution deserves special mention.

The fact that the curvature scalar contains the field strength's quadratically

8), 9), 10),

(as noted already by Th. Kaluza and O. Klein FNS)) may answer

a question raised by R.P. Feynman whether one could understand why the

Yang-Mills Lagrangian just contains the quadratic invariant Wf W’*v f.
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