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Abstract

In the following few pages an account is given of a theme , which I
began in 1966 and continued to the present.



1 ¥ = X (o — inm) scalar - pseudoscalar fields

V2
and the class of their chiral symmetry represen-
tations
Lets denote by t , s, n --- quark flavor indices with
t,s,n--=1,---, N = Ny (1)

and by A * the N 2 hermitian U y matrices with the normalization

a= 0.1, N2 R = VR (g @
trA® =0fora>0; X, = V2ZA*

In order to maintain clear quark field association we choose the convention
and restriction projecting out color and spin degrees of freedom from the
complete set of § ¢ bilinears

S~ a5 (1 +9s5Rr) ¢
1 . (3)
Y5R = 770717273 ; ¢¢ = 1,23 color

The logical structure of 3 - variables is different, when used to derive the
dynamics of quarks, i.e. QCD, or before this, when used in their own right
as by M. Gell-Mann and M. Lévy [1] , or else associating chiral symmetry
with superconductivity as by Y. Nambu and G. Jona-Lasinio [2].

Here the chiral UN s g x UN 1 transformations correspond to

UNpugr: 3 (1 +795r)a5— Ve 3 (1 4+ v5r)q5%
UNpgrp: 3 (1 —95R)qS > Wi (1 —958r) 0%
!

Y > Vw1

(4)

The construction in eq. 4 can be interpreted as group-complexification |,
discussed below. The Y-variables arise as classical field configurations ,
Legendre transforms of the QCD generating functional driven by general
x-dependent complex color neutral mass terms.



The latter represent external sources with UN ;g X UN 1, substitu-
tions aligned with the X - variables

—Lm = my(x) {755 (1 —vs5r)qf} + he
x tr(mST + Sm') (5)
m—->VmW1— Y 5 vyew-!

The so defined (classical) target space variables ! form
— upon the exclusion of values for which Det ¥ = 0 —

the group

GL(N,C) = {S| DetX # 0} (6)

the general linear group over the complex numbers in N dimensional target-
space .

We proceed to define the hermitian chiral currents generating

UN s1 r x UN g 1 ( global ) pertaining to X

—
=

j/‘jR:trET<%>\“iau>E ~ GYu35A"PRry
jZL:tTETiEuE(_%)‘a) ~ TYuzAPrg

A9,B=A4A0,B - (0,A)B; Pru =3 (1 £7vs5g)
(7)
We avoid here to couple external sources to all other § ¢ bilinears except the
scalar - pseudoscalar ones as specified in eq. 5 for two reasons

1) — to retain a minimum set of external sources capable to reproduce
spontaneous chiral symmetry breaking alone as a restricted but fully
dynamical spontaneous phenomenon.

2) — in order to avoid a nonabelian anomaly structure . The latter would
force either the consideration of leptons in a ddition to quarks , or the
inclusion of nonabelian Wess-Zumino terms obtained from connections
formed from the ¥ fields [3] .

1 The notion of target-space is used as defined in modern context of string theories .



For completeness we display the equal time current algebra relations inher-
ited from q ¢

[J6r(t, 7)), G0r(t,G)] = ifanifr(t,T)6(F - 7)
(e, (t, &), G8,(t, )] = ifamdlp(t, 3)03(F — §)
[G6r(t, @), 50, (t,5)] =0

[5A% 52T = i fun § "

(8)
The GL ( N, C ) group structure defined in eq. 6 enables bilateral multi-
plication of the 2, Det ¥ # 0 elements , of which the left- and right-chiral
currents defined in eq. 7 are naturally associated with the Lie-algebra of
UN 1 g X UN p , through the exponential mapping with subgroups of
GL(N,C)r x GL(N, C) . These (sub)groups act by multi-
plication of the base-group-manifold by respective multiplication from the
left «» G gr and from the right < G . The reverse association
— here — is accidental
GL(N,C)ru) — Gruy =G
e G;9g€e Gr; he G :
Gre G - ¥ — gXx
Grpe G < X — Xh -1
Gr® G ¢ G < Z—>gZh_l

Y =X (x); g, h : x-independent or 'rigid’
The exponential mapping and compactification(s) of G ( X )

The condition Det ¥ # 0 in the restriction to GL (N ,C ) (eq. 6 ) is very
special and surprising in conjunction with the field variable definition.

In fact such a condition is completely untenable and shall be discussed below.
This was a stumbling block for a while .



This condition is equivalent to the relation with the Lie algebra
of GL ( N, C') through the exponential mapping and its inverse ( log )

Y = exp b ; b:ba%)‘GQ %)‘0:(2N)_1/2(ﬂ)NxN

Det¥ = exp (trb) = exp ; 0 = ,/% b0 (10)
Det¥ =0 o R = -0 ; 0 ~0+271iv; v el

Of course eliminating — from general dynamical X-variables — the subset with
Det ¥ = 0 affects only the non-solvable ( and non-semi-simple 2 ) part of
the associated group, whence the former are interpreted as a manifold, which
simply is not a group . It may thus appear that the restriction in order to
enforce a group structure is characterized by the notion of 'group-Plague’,
infecting the general structure at hand .

This said we continue to treat Y-variables as if they were identifiable with
GL(N,C).

The next reductive step is to consider the solvable ( simple ) subgroup

SL(N,C)CGL(N,C)cC{x}
SL(N,C)={%|petS =1} (11)
S ~ %/ (Detx) YN . allowing all N roots

The advantage of the above reduction to SL ( N , C') is that it allows the
exponential mapping to an irreducible ( simple ) Lie-algebra ,
refining eq. 10

b0 =0; trAe =0

i.e. eliminating the unit matrix oc A° from the latter .

2 The words testify to the fight for definite mathematical notions .



1.1 Relaxing the condition Det 3 = 0 and the unique association

. GL(N,C)
Det ¥ # 0

We transform ¥ _; as defined or better associated in eq. 3 by means of the
N 2 hermitian matrices X “ in eq. 2 .

Y =trA'Y;a=0,1,---, N2 -1

(13)

The complex ( field valued ) quantities 3 ¢ are components of a complex
N 2-dimensional space C' y 2 and in one to one correspondence with the
matrix elements ¥ ;

C’Nz:{(EO,El,---EN2_1)} (14)

This serves to become aware of the second algebraic relation ( @ ) , beyond
(® ), ie. to add matrices and not to just multiply them . 3

The @ operation is also encountered upon ’shifting’ general (pseudo)scalar
fields relative to a spontaneous vacuum expected value . This is relevant
here for spontaneous breaking of chiral symmetry .

It arises independently for the SU2 r-doublet scalar (Higgs) fields .

Hence the idea that the combination of & and ® — which form the full
motion group ( of matrices ) — are related to 'fields’ ( "Korper’ in german ).
Thus we are led to consider quaternion- and octonion-algebras in the next
sections .

1.2 Octonions ( or Cayleigh numbers ) as pairs of quaternions

Let

g =q% o +q%iq; a=123; (q°, 7)€ Ry

i0:ﬂ§iaib:_5abio+5abnin ]fora,b,n:1,2,3
q =4q 0 0 —q%ia

(15)
denote a quaternion over the real numbers .
Then a single octonion is represented ( modulo external automorphisms %)

3 Flements of a N x N-matrix can equivalently be arranged along a line .
4 Thes automorphisms form the exceptional group G » .



by a pair of quaternions ( p, ¢ ) with the nonassociative multiplication rule

o=(p,q)=p%0+p"Ja+q%ja+q°ja+a
0% =(p®,q%) ; a=12-

01 ®02 _(p1p2 _g2q17q2p1 +q1ﬁ2)
o= (P, —q)

— foro? =o' 0% = (pl, —¢?t)

Jo=9,J1.77; J123 =~ 1123
(16)
In eq. 16 we used the involutory properties
7=q;0=o0 (17)
It follows that unitary quaternions (¢ g = Gq = 9 ) are equivalent to
S3 ~ SU2 C R4, whereas unitary octonions (00 = 00 = 9 ) are

equivalent to S7 C Ry .

This leads together with the complex numbers to the algebraic association of
N =1land N =2 — X variables to the three inequivalent ’field’-algebras

1 N=1 < C~ Ry DS,
2 N=2 < Q~ R4 D S3 (18)
3 N=2 « 0~ Rg>D Sy

The group structures of cases 1 - 3 in eq. 18 correspond to
1 : 51 Ul - Ulgr® Ulyg
2 . S3 ~ 8U2 - SU2Rr ® SU2, (19)
3 : Sy — U2; ® U2¢p

While the model introduced by M. Gell-Mann and M. Lévy [1] corresponds
to case 2 (eq. 18,19 ) , it is case 3 ( also for N = 2 ) which is different
and the only one extendable to N > 2.

This shall be illustrated for N = 3 and from there back to case 3 with
N = 2 in the next section.



1.3 = - (o0 —in)for N = Ny =3(my ~mgr~ms)

V2
For N = 3 the ¥ — variables describe a U3 y; — nonet of scalars and
pseudoscalars (one each) . I shall use the notation X . labelled
by the names of pseudoscalars , yet denoting associated pairs
scalars « pseudoscalars
Yu Yi- Y-
Y = Yo+ Y Xgo
b K + by KO DM 33
(20)
- 1 , 1 1
211—\/3277 +\/§Zﬂo+%2n
| 1 1
222_ﬁ2n,_ﬁ2ﬂ-0+%2n
_ 1 2
In the chiral limit m , 45 — 038 pseudoscalar Goldstone modes become
massless : 7, (3); K, K, (4); n, (1), whereas ' and all 9 scalars

remain massive.
To < n < 1 — mixing - eventually different for scalars relative to
pseudoscalars — is not discussed here [4] .

Projecting back on case 3 and N = 2 in the limit m 34 — o0 an

SU2 4 — singlet pair — denoted ¥ @ forms as ( singlet ) combinations

of ¥,,% 0’ and a corresponding isotriplet pair ¥ , — by x

Instead of the 2 x 2 matrix form pertinent to case 3 and N = 2 we
can equivalently display the double quaternion basis from the octonion -
structure (eq. 16 )

=l
N

P (T — [

(21)

Qi

™)

q < (T,(Z) )



2 From ( X ) as spontaneous real parameter to f

As shown in section 1 , the ¥ — variables are chosen such , that the spon-
taneous breaking of just chiral symmetry can be explicitely realized .

For N equal ( positive ) quark masses it folows

<E> = S9TNxnN

S= Lo (%) ¢ L= d(o—in) gy
jop = iStrgA®d, (X —-%T) + -

= 50,7 + -
¥y - 2T = —igbA?
<Q|ng|7rb,p>:i%pr“5“bfora,b>0

~S =30 o = (00) = (3)7 Fai Fa o~ 024 MeV

for 7
(22)
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