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Abstract

In the following few pages an account is given of a theme , which I
began in 1966 and continued to the present.



1 Σ = 1√
2

( σ − i π ) scalar - pseudoscalar fields

and the class of their chiral symmetry represen-

tations

Lets denote by t , s , n · · · quark flavor indices with

t , s , n · · · = 1 , · · · , N ≡ N fl (1)

and by λ
a

the N 2 hermitian U N matrices with the normalization

λ
a

=
(

λ
a

)

ts
; tr λ

a
λ

b
= δ ab

a = 0 , 1 , · · · , N 2 − 1 ; λ
0

=
√

N
− 1/2

( ¶ ) N×N

tr λ
a

= 0 for a > 0 ; λ a | conv. =
√

2 λ
a

(2)

In order to maintain clear quark field association we choose the convention
and restriction projecting out color and spin degrees of freedom from the
complete set of q q bilinears

Σ s ṫ ∼ q ċ
ṫ

1
2 ( 1 + γ 5 R ) q c

s

γ 5 R = 1
i γ 0 γ 1 γ 2 γ 3 ; c, ċ = 1, 2, 3 color

(3)

The logical structure of Σ - variables is different, when used to derive the
dynamics of quarks, i.e. QCD, or before this, when used in their own right
as by M. Gell-Mann and M. Lévy [1] , or else associating chiral symmetry
with superconductivity as by Y. Nambu and G. Jona-Lasinio [2].

Here the chiral UN fl R × UN fl L transformations correspond to

UN fl R : 1
2 ( 1 + γ 5 R ) q c

s → V ss′
1
2 ( 1 + γ 5 R ) q c

s′

UN fl L : 1
2 ( 1 − γ 5 R ) q c

s → W ss′
1
2 ( 1 − γ 5 R ) q c

s′

l
Σ → V Σ W −1

(4)

The construction in eq. 4 can be interpreted as group-complexification ,
discussed below. The Σ-variables arise as classical field configurations ,
Legendre transforms of the QCD generating functional driven by general
x-dependent complex color neutral mass terms.
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The latter represent external sources with UN fl R × UN fl L substitu-
tions aligned with the Σ - variables

− L m = m ṫs ( x )
{

q ċ
s

1
2 ( 1 − γ 5 R ) q c

t

}
+ h.c.

∝ tr
(

m Σ † + Σ m † )

m → V m W −1 ←→ Σ → V Σ W −1

(5)

The so defined (classical) target space variables 1 form

– upon the exclusion of values for which Det Σ = 0 –

the group

GL ( N , C ) = { Σ | Det Σ 6= 0 } (6)

the general linear group over the complex numbers in N dimensional target-
space .
We proceed to define the hermitian chiral currents generating
UN fl R × UN fl L ( global ) pertaining to Σ

j a
µ R = tr Σ †

(
1
2 λ a i

⇋

∂ µ

)
Σ ∼ q γ µ

1
2 λ aP R q

j a
µ L = tr Σ † i

⇋

∂ µ Σ
(
− 1

2 λ a
)
∼ q γ µ

1
2 λ aP L q

A
⇋

∂ µ B = A ∂ µ B − ( ∂ µ A ) B ; P R (L) = 1
2 ( 1 ± γ 5 R )

(7)
We avoid here to couple external sources to all other q q bilinears except the
scalar - pseudoscalar ones as specified in eq. 5 for two reasons

1) – to retain a minimum set of external sources capable to reproduce
spontaneous chiral symmetry breaking alone as a restricted but fully
dynamical spontaneous phenomenon.

2) – in order to avoid a nonabelian anomaly structure . The latter would
force either the consideration of leptons in a ddition to quarks , or the
inclusion of nonabelian Wess-Zumino terms obtained from connections
formed from the Σ fields [3] .

1 The notion of target-space is used as defined in modern context of string theories .

2



For completeness we display the equal time current algebra relations inher-
ited from q q

[
j a

0 R ( t , ~x ) , j b
0 R ( t , ~y )

]
= i f abn j n

0 R ( t , ~x ) δ 3 ( ~x − ~y )
[

j a
0 L ( t , ~x ) , j b

0 L ( t , ~y )
]

= i f abn j n
0 L ( t , ~x ) δ 3 ( ~x − ~y )

[
j a

0 R ( t , ~x ) , j b
0 L ( t , ~y )

]
= 0

[
1
2 λ a , 1

2 λ b
]

= i f abn
1
2 λ n

(8)
The GL ( N , C ) group structure defined in eq. 6 enables bilateral multi-
plication of the Σ , Det Σ 6= 0 elements , of which the left- and right-chiral
currents defined in eq. 7 are naturally associated with the Lie-algebra of
UN fl R × UN fl L through the exponential mapping with subgroups of
GL ( N , C ) R × GL ( N , C ) L . These (sub)groups act by multi-
plication of the base-group-manifold by respective multiplication from the
left ↔ G R and from the right ↔ G L . The reverse association
– here – is accidental

GL ( N , C ) R (L) → G R (L) = G

Σ ∈ G ; g ∈ G R ; h ∈ G L :

G R • G ↔ Σ → g Σ

G L • G ↔ Σ → Σ h −1

G R ⊗ G L • G ↔ Σ → g Σ h −1

Σ = Σ ( x ) ; g , h : x-independent or ’rigid’

(9)

The exponential mapping and compactification(s) of G ( Σ )

The condition Det Σ 6= 0 in the restriction to GL (N ,C ) ( eq. 6 ) is very
special and surprising in conjunction with the field variable definition.

In fact such a condition is completely untenable and shall be discussed below.
This was a stumbling block for a while .
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This condition is equivalent to the relation with the Lie algebra
of GL ( N , C ) through the exponential mapping and its inverse ( log )

Σ = exp b ; b = b a 1
2 λ a ; 1

2 λ 0 = ( 2 N ) −1/2 ( ¶ ) N×N

Det Σ = exp ( tr b ) = exp β ; β =
√

2
N b 0

Det Σ = 0 ↔ ℜ β = − ∞ ; β ∼ β + 2 π i ν ; ν ∈ Z

(10)

Of course eliminating – from general dynamical Σ-variables – the subset with
Det Σ = 0 affects only the non-solvable ( and non-semi-simple 2 ) part of
the associated group, whence the former are interpreted as a manifold, which
simply is not a group . It may thus appear that the restriction in order to
enforce a group structure is characterized by the notion of ’group-Plague’,
infecting the general structure at hand .
This said we continue to treat Σ-variables as if they were identifiable with
GL ( N , C ) .
The next reductive step is to consider the solvable ( simple ) subgroup

SL ( N , C ) ⊂ GL ( N , C ) ⊂ { Σ }

SL ( N , C ) =
{

Σ̂
∣∣∣ Det Σ̂ = 1

}

Σ̂ ∼ Σ / ( Det Σ ) 1/N ; allowing all N roots

(11)

The advantage of the above reduction to SL ( N , C ) is that it allows the
exponential mapping to an irreducible ( simple ) Lie-algebra ,
refining eq. 10

Σ̂ = exp b̂ ; b̂ = b̂ a 1
2 λ a ; a = 1 , 2 , · · · , N 2 − 1

b̂ 0 = 0 ; tr λ a = 0
(12)

i.e. eliminating the unit matrix ∝ λ0 from the latter .

2 The words testify to the fight for definite mathematical notions .
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1.1 Relaxing the condition Det Σ = 0 and the unique association

Σ −→
Det Σ 6= 0

GL ( N ,C )

We transform Σ sṫ as defined or better associated in eq. 3 by means of the
N 2 hermitian matrices λ

a
in eq. 2 .

Σ sṫ = Σ a
(

λ
a

)

sṫ

Σ a = tr λ
a

Σ ; a = 0 , 1 , · · · , N 2 − 1
(13)

The complex ( field valued ) quantities Σ a are components of a complex
N 2-dimensional space C N 2 and in one to one correspondence with the
matrix elements Σ sṫ

C N 2 =
{ (

Σ 0 , Σ 1 , · · · Σ N 2−1
) }

(14)

This serves to become aware of the second algebraic relation ( ⊕ ) , beyond
( ⊗ ) , i.e. to add matrices and not to just multiply them . 3

The ⊕ operation is also encountered upon ’shifting’ general (pseudo)scalar
fields relative to a spontaneous vacuum expected value . This is relevant
here for spontaneous breaking of chiral symmetry .

It arises independently for the SU2 L-doublet scalar (Higgs) fields .

Hence the idea that the combination of ⊕ and ⊗ – which form the full
motion group ( of matrices ) – are related to ’fields’ ( ’Körper’ in german ).
Thus we are led to consider quaternion- and octonion-algebras in the next
sections .

1.2 Octonions ( or Cayleigh numbers ) as pairs of quaternions

Let

q = q 0 i 0 + q a i a ; a = 1, 2, 3 ;
(

q 0 , ~q
)
∈ R 4

i 0 = ¶ ; i a i b = − δ ab i 0 + ε abn i n | for a , b , n = 1, 2, 3

q = q 0 i 0 − q a i a

(15)
denote a quaternion over the real numbers .
Then a single octonion is represented ( modulo external automorphisms 4)

3 Elements of a N × N-matrix can equivalently be arranged along a line .
4 Thes automorphisms form the exceptional group G 2 .
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by a pair of quaternions ( p , q ) with the nonassociative multiplication rule

o = ( p , q ) = p 0 j 0 + p a j a + q 0 j 4 + q a j 4 + a

o α = ( p α , q α ) ; α = 1, 2, · · ·
o 1 ⊙ o 2 =

(
p 1 p 2 − q 2 q 1 , q 2 p 1 + q 1 p 2

)

o = ( p , − q )

→ for o 2 = o 1 ; o 2 =
(

p 1 , − q 1
)

o 1 ⊙
(

o 2 = o 1
)

=
(

p 1 p 1 + q 1 q 1 , − q 1 p 1 + q 1 p
1

)

=
{ ∣∣ p 1

∣∣ 2
+

∣∣ q 1
∣∣ 2

}
j 0 + 0

j 0 = ¶ , j 1 , j 7 ; j 1,2,3 ≃ i 1,2,3

(16)
In eq. 16 we used the involutory properties

q = q ; o = o (17)

It follows that unitary quaternions ( q q = q q = ¶ ) are equivalent to
S 3 ≃ SU2 ⊂ R 4 , whereas unitary octonions ( o o = o o = ¶ ) are
equivalent to S 7 ⊂ R 8 .

This leads together with the complex numbers to the algebraic association of
N = 1 and N = 2 − Σ variables to the three inequivalent ’field’-algebras

1 N = 1 ↔ C ≃ R 2 ⊃ S 1

2 N = 2 ↔ Q ≃ R 4 ⊃ S 3

3 N = 2 ↔ O ≃ R 8 ⊃ S 7

(18)

The group structures of cases 1 - 3 in eq. 18 correspond to

1 : S 1 ≃ U1 ↔ U1 R ⊗ U1 L

2 : S 3 ≃ SU2 ↔ SU2 R ⊗ SU2 L

3 : S 7 ↔ U2 L ⊗ U2 R

(19)

While the model introduced by M. Gell-Mann and M. Lévy [1] corresponds
to case 2 ( eq. 18 , 19 ) , it is case 3 ( also for N = 2 ) which is different

and the only one extendable to N > 2 .
This shall be illustrated for N = 3 and from there back to case 3 with
N = 2 in the next section.

6



1.3 Σ = 1√
2

( σ − i π ) for N = N fl = 3 ( m u ∼ m d ∼ m s )

For N = 3 the Σ − variables describe a U3 fl − nonet of scalars and

pseudoscalars (one each) . I shall use the notation Σ → π , K , η , η
′ labelled

by the names of pseudoscalars , yet denoting associated pairs
scalars ↔ pseudoscalars

Σ =





Σ 11 Σ π − Σ K −

Σ π + Σ 22 Σ
K

0

Σ K + Σ K 0 Σ 33





Σ 11 = 1√
3

Σ η ′ + 1√
2

Σ π 0 + 1√
6

Σ η

Σ 22 = 1√
3

Σ η ′ − 1√
2

Σ π 0 + 1√
6

Σ η

Σ 22 = 1√
3

Σ η ′ − 2√
6

Σ η

(20)

In the chiral limit m u,d,s → 0 – 8 pseudoscalar Goldstone modes become
massless : π , (3) ; K , K , (4) ; η , (1) , whereas η

′

and all 9 scalars
remain massive.
π 0 ↔ η ↔ η

′ − mixing – eventually different for scalars relative to
pseudoscalars – is not discussed here [4] .

Projecting back on case 3 and N = 2 in the limit m s → ∞ an
SU2 fl − singlet pair – denoted Σ η (2)

– forms as ( singlet ) combinations

of Σ η , Σ η
′ and a corresponding isotriplet pair Σ π → ~Σ π .

Instead of the 2 × 2 matrix form pertinent to case 3 and N = 2 we
can equivalently display the double quaternion basis from the octonion -
structure ( eq. 16 )

p ↔
(

σ η (2)
, ~π

)
→ [1]

q ↔
(

η (2) , ~σ π

) (21)

7



2 From 〈 Σ 〉 as spontaneous real parameter to f π

As shown in section 1 , the Σ − variables are chosen such , that the spon-
taneous breaking of just chiral symmetry can be explicitely realized .

For N equal ( positive ) quark masses it folows

〈 Σ 〉 = S ¶ N× N

S = 1√
2 N

〈
σ 0

〉
; Σ = 1√

2
( σ − i π ) N×N

j a
µ R = i S tr 1

2 λ a ∂ µ

(
Σ − Σ † )

+ · · ·

= S ∂ µ π a + · · ·

Σ − Σ † = − i π b λ b

〈 Ω | j a
µ R

∣∣ π b , p
〉

= i 1
2 f π p µ δ ab for a, b > 0

− S = 1
2 f π ↔ −

〈
σ 0

〉
=

(
N
2

) 1/2
f π ; f π ∼ 92.4 MeV

for ~π
(22)
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