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1 Minimal ν-extension of fermion families – left - and right chiral bases

(
u 1 u 2 u 3 ν | N û 3 û 2 û 1

d 1 d 2 d 3 e − | e + d̂ 3 d̂ 2 d̂ 1

) γ̇ → L

= ( f ) γ̇ left chiral ↔ γ̇=1,2

( f ) α = ε α γ

{
( f ) γ̇

} ∗
= right chiral ↔ α=1,2

(
û 1 û 2 û 3 ν̂ | N̂ u 3 u 2 u 1

d̂ 1 d̂ 2 d̂ 3 e + | e − d 3 d 2 d 1

)

α → R

(1)

and family 1 → 2 → 3 . →
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In eq. 1 ∗ denotes the operation of hermitian conjugation in field
variable space f ( x ) , whereas ε αγ denotes the symplectic or
Lorentz-invariant 2 × 2 matrix

ε α γ = i ( σ 2 ) α γ =

(
0 1

−1 0

)
(2)

If the spinor indices are suppressed , the two bases shall be
denoted by L , R as indicated in eq. 1 .
The symbols — represent a mirror between the left and right sides
of components . This allows the mirror operation , which we
exemplify acting on the right chiral basis ( eq. 1 ) denoted↔| →
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↔|
(

û 1 û 2 û 3 ν̂ | N̂ u 3 u 2 u 1

d̂ 1 d̂ 2 d̂ 3 e + | e − d 3 d 2 d 1

)

α → R

=

(
u 1 u 2 u 3 N̂ | ν̂ û 3 û 2 û 1

d 1 d 2 d 3 e − | e + d̂ 3 d̂ 2 d̂ 1

)

α → R

= (↔| f ) α l
(

u 1 u 2 u 3 ν | N û 3 û 2 û 1

d 1 d 2 d 3 e − | e + d̂ 3 d̂ 2 d̂ 1

) γ̇ → L

(3)

→
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1a Dirac like pairing of ( ↔| f ) α and ( f ) γ̇

To be definite we can also label the components in the left chiral
and right chiral bases in eqs. 1 and 3 with numbers (1-16) as shown
in eq. 6 below .
Using the so defined ’flavor’ components r = 1, · · · , 16
the mirror operation corresponds to the involution in ’flavor’
number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12 11 10 9 16 15 14 13 4 3 2 1 8 7 6 5

=

0
@ r

s

1
A → s = s ( r )

(4)

This corresponds to
{

(↔| f ) s = (f ) r } γ̇ → L
or α → R ; s = s ( r )(5) →

– p. 7



5mm

(
u 1 u 2 u 3 ν | N û 3 û 2 û 1

d 1 d 2 d 3 e − | e + d̂ 3 d̂ 2 d̂ 1

) γ̇ → L

=

(
f 1 f 2 f 3 f 4 | f 9 f 10 f 11 f 12

f 5 f 6 f 7 f 8 | f 13 f 14 f 15 f 16

) γ̇ → L

γ̇ → L ↔ α → R : ( f r ) α = ε α γ

{
( f r ) γ̇

}∗
; r = 1, · · · , 16

(↔| f ) α =

=

(
f 12 f 11 f 10 f 9 | f 4 f 3 f 2 f 1

f 16 f 15 f 14 f 13 | f 8 f 7 f 6 f 5

)

α → R(6) →
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(↔| f ) α → R

=

(
u 1 u 2 u 3 N̂ | ν̂ û 3 û 2 û 1

d 1 d 2 d 3 e − | e + d̂ 3 d̂ 2 d̂ 1

)

α → R

⊎

(
u 1 u 2 u 3 ν | N û 3 û 2 û 1

d 1 d 2 d 3 e − | e + d̂ 3 d̂ 2 d̂ 1

) γ̇ → L

= ( f ) γ̇ → L

(7)

Merging the spinor components according to eq. 7 generates Dirac

doubling
{

α → R ] γ̇ → L
}
→ ♦A ; ♦A = 1, · · · , 4 →
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The so doubled full 16-multiplet has to be treated with special
attention for the neutrino-antineutrino fields , which in the
♦A → L & R - basis I denote by ( n , n̂ ) ♦A

(
u 1 u 2 u 3 n | n̂ û 3 û 2 û 1

d 1 d 2 d 3 e − | e + d̂ 3 d̂ 2 d̂ 1

)

♦A

n ♦A =

(
N̂ α

ν γ̇

)
, n̂ ♦A =

(
ν̂ α

N γ̇

)

N̂ α = ε αγ

{
N γ̇

} ∗
, ν̂ α = ε αγ

{
ν γ̇
} ∗

(8)

The heavy neutrino states ( not stable ones ) are mainly absorbed

and created by the fields N , N̂ . →
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The reversed assignments ofN ↔ N̂ relative to ν ↔ ν̂ in
eqs. 1 - 8 is just a matter of convention , but better suited once one
of the chiral bases is selected .
Lets also associate 16 base fields to the doubled basis ( f ) ♦A

(
u 1 u 2 u 3 n | n̂ û 3 û 2 û 1

d 1 d 2 d 3 e − | e + d̂ 3 d̂ 2 d̂ 1

)

♦A

= ( f ) ♦A

(9)

with the numbering of components ( f r ) ♦A as in eqs. 4 - 6 . →
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Then charge conjugation (as an operation , not a symmetry) relates
(↔| f ) ♦A ↔ ( f ) ♦A

( C γ 0 ) ♦A ♦B

{
(↔| f r ) ♦B

} ∗
= ( f r ) ♦A

r = 1, · · · , 16
(10)

In eq. 10 we have reported the irreducible Lorentzian structure inherent in both chiral bases ( L , R ) .

This is equivalent to the d = 1 + 3 chiral representation of the γ µ matrices in the associated

♦A basis

γ µ =

0
@ 0 σ µ

eσ µ 0

1
A ;

σ µ = ( σ 0 , ~σ )

eσ µ = ( σ 0 , − ~σ )
; σ 0 = ¶ , σ 1,2,3 : Pauli matrices

γ 5 R = 1
i

γ 0 γ 1 γ 2 γ 3 =

0
@ ¶ 0

0 −¶

1
A = − γ 5 L ; C =

0
@ ε 0

0 −ε

1
A = 1

i
γ 0 γ 2

γ µ = η µν γ ν ; η µν = diag ( 1 , −1 , −1 , −1 ) : uncurved space-time metric

(11) →

– p. 12



10mm

Dropping for a moment the spinor indices ♦ A , · · · we associate
with the involutory operation defined in eq. 10 a unitary

transformation , denoted Ĉ , Ĉ 2 = ¶ – charge conjugation

Ĉ −1 f Ĉ = C γ 0 { f } ∗ ≡ f (C)

Ĉ −1 f ∗ Ĉ = C γ 0 f →
(

f (C)
)
≡ (↔| f ) ↔

( {
f (C)

} (C)
)

= (↔| (↔| f ) ) = ( f )

(12)

On the ’side’ it follows from eq. 12

( C γ 0 ) 2 = ¶(13)

→

– p. 13



11mm

1b bC , bP , bT → bΘ = bC bP bT

We continue with the discrete unitary transformation P̂ associated

with parity and the antiunitary one T̂ corresponding to time
reversal , neither of which is a symmetry .
Beginning with parity we associate to it the transformation ,
component by component ( f r ) ♦A in the ♦A basis , suppressing
the spinor index ( as in eq. 12 )

P̂ −1 ( f ( x ) ) P̂ = ( i γ 0 f ( Px ) ) =
(

f (P ) ( x )
)

T̂ −1 ( f ( x ) ) T̂ = ( C γ 5 f ( Tx ) ) =
(

f (T ) ( x )
)

γ 5 = + γ 5 R + to be definite

x =
(

x 0 , ~x
)

; Px =
(

x 0 , − ~x
)

; Tx =
(
− x 0 , ~x

)

(14) →
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The mirror relation in eq. 12 is algebraic , so we must check the

consistency of the P̂ , T̂ operators as defined in eq. 14 . We do this
in appendix 1 , from where we report ( from eqs. 71 - 73 )

Ĉ 2 ∼ ¶ , P̂ 2 ∼ − ¶ , T̂ 2 ∼ − ¶
Ĉ P̂ ∼ P̂ Ĉ , Ĉ T̂ ∼ T̂ Ĉ , P̂ T̂ ∼ − T̂ P̂

(15)

Next we turn to the antiunitary symmetry Θ̂ = Ĉ P̂ T̂

Θ̂ −1 ( f ( x ) ) Θ̂ =
(

C γ 0

(
1
i

) ∗
γ 0 C γ 5 f ∗ (−x )

)

=
(

1
i γ 5 f ∗ (−x )

)

Θ̂ 2 = Ĉ P̂ T̂ Ĉ P̂ T̂ ∼ P̂ T̂ P̂ T̂ ∼ − P̂ T̂ 2 P̂ ∼ − ¶
(16) →
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We project back the action of Θ̂ [1’] [2] to the left and right chiral
bases respectively ( eq. 7 ) , which is equivalent to replacing
γ 5 = γ 5 R in eq. 16 by - 1 for the left chiral - and by + 1 for the
right chiral components

Θ̂ −1
(

f γ̇ ( x )
)

Θ̂ =
(

i
{

f γ̇
} ∗

(−x )
)

Θ̂ −1 ( f α ( x ) ) Θ̂ =
(
− i { f α } ∗ (−x )

)

f α ( y ) = ε αγ

{
f γ̇

} ∗
( y )

(17)

The 3 relations in eq. 17 are not independent and checked for
consistency in appendix 1 , from where we also recover the relation

Θ̂ 2 ∼ − ¶ → (− 1 ) # f = fermion number parity(18)

→
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A few remarks as to Θ̂ [3] are given here :

1) bΘ combines two intertwined operations

f γ̇ ( x ) →
˘

f γ̇
¯ ∗

( x ) = g γ ( x ) ; g γ f
′

γ : Lorentz (pseudo)scalar

x → − x = P T x : space-time inversion
(19)

2) Space-time inversion is not a local transformation , and only unambiguously defined in uncurved

space-time .

3) Hence 2) implies that upon inclusion of gravity the proof that bΘ is an (antunitary) symmetry cannot be

inferred from locality and Lorentz invariance pertinent to uncurved space-time .

4) A subtle question arises : is there in the general case an extension of bΘ which continues to be

an antihermitian genuine symmetry ?

→
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2 Projecting out leptons and antileptons

We go backwards along the developed bases , starting with
♦A ( eqs. 8 and 9 )

(
u 1 u 2 u 3 n | n̂ û 3 û 2 û 1

d 1 d 2 d 3 e − | e + d̂ 3 d̂ 2 d̂ 1

)

♦A

= ( f ) ♦A

↘↙
(

n | n̂

e − | e +

)

♦A

=
(

` | ̂̀
)

♦A

(20)

→
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The mirror reflection defined in eq. 6 is naturally projected on the
lepton fields , as defined in eq. 20 , where we have introduced the
shorthand as displayed in eq. 22 below , wherein we extend charge
conjugation to the chiral components of charged leptons e ±

(
e +
)

α
= ε αγ

{ (
e − ) γ̇

} ∗

(
e − )

α
= ε αγ

{ (
e +
) γ̇
} ∗

(
e +
) γ̇

= ε̃ γ̇α̇
{ (

e − )
α

} ∗

(
e − ) γ̇

= ε̃ γ̇α̇
{ (

e +
)

α

} ∗

ε̃ γ̇α̇ ≡ ε̃ γα = ε αγ ≡ ε α̇γ̇

in matrix form , t = transposed : ε̃ = ε −1 = ε t = − ε

(21)

→
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` ♦A =

(
n

e −

)

♦A

; ̂̀♦A = ( C γ 0 ) ♦A♦B { ` ♦B } ∗

and L ↔ L̂

̂̀♦A =

(
n̂

e +

)

♦A

n ♦A =

(
N̂ α

ν γ̇

)
, n̂ ♦A =

(
ν̂ α

N γ̇

)

e −
♦A =



(

e − )
α

(
e − ) γ̇


 , e +

♦A =



(

e +
)

α
(

e +
) γ̇




(22)
→
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The complete projections on the L - and R - chiral bases ( eq. 6 ) are
done in appendix A2 , reporting eq. 78 as eq. 23 below

(
` | ̂̀

) γ̇ → L

=

(
ν | N
e − | e +

) γ̇ → L

(
̂̀ | `

)

α → R

=

(
N̂ | ν̂

e − | e +

)

α → R

N̂ α = ε αγ

{
N γ̇

} ∗
,
(

e − )
α

= ε α γ

{ (
e +
) γ̇
} ∗

ν̂ α = ε αγ

{
ν γ̇
} ∗

,
(

e +
)

α
= ε α γ

{ (
e − ) γ̇

} ∗

and ↔ h.c.

(23)

→
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Two remarks shall conclude this section

1) When transfroming between L - and R - chiral bases it is by no means essential to associate

upper dotted spinor indices γ̇ → L to lower undotted ones α → R since individually indices can be

raised and lowered by the symplectic invaraint matrices ( eq. 21 )

( ε = i σ 2 , eε ) ; eε = ε −1 = ε t = − ε(24)

but it is essential to keep one each of the dotted and undotted type , related by local hermition

conjugation .

2) The mirror association ↔| is a feature specific to chiral bases pertaining respectively to the

16 and 16 representations of SO10 , and constitute the (a) minimal neutrino mass induced extension

of fermion families . In possible extended fermion representations , e.g. involving the

27 and 27 representations of the exceptional group E6 , the number of fermions in one

of the chiral bases can well be odd .

3 Mass and mass from mixing

→
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3 Mass and mass from mixing

Figure 1:

Key questions → why 3 ? why SO10 ?

From ref. [4] PM , Venice , 22. February 2005 . →
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Lets call the above extension of the standard model the ’minimal
nu-extended SM’ . a



• • • ν | N • • •

• • • ` | ̂̀ • • •




γ̇

F = e , µ , τ

↓



ν N

` ̂̀




γ̇

F = e , µ , τ

(25)

→
a [ 5 ] Harald Fritzsch and Peter Minkowski, ”Unified interactions of leptons and hadrons”, Annals

Phys.93 (1975) 193 and Howard Georgi, ”The state of the art - gauge theories”, AIP Conf.Proc.23 (1975)

575.
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The right-chiral base fields are then associated to 1 for 1

( f r ) F α = ε αγ

[
( f r ) γ̇

F

] ∗

( ε = i σ 2 ) αγ =




0 1

−1 0




(26)

The matrix ε is the symplectic (Sp (1)) unit, as implicit in Ettore
Majorana’s original paper [1] .
The local gauge theory is based on the gauge (sub-) group

SL ( 2 , C ) × SU3 c × SU2 L × U1 Y(27)

... why ? why ’tilt to the left’ ? →
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3a Yukawa interactions and mass terms

The doublet(s) of scalars are related to the ’tilt to the left’ .




ν N

` ̂̀




F
↔




ϕ 0 Φ +

ϕ − Φ 0


 = z(28)

The green entries in eq. 28 denote singlets under SU2 L .

The quantity z is associated with the quaternionic or octonionic
structure inherent to the ( 2 , 2 ) representation of
SU2 L ⊗ SU2 R ( beyond the electroweak gauge group ) [ 6 ] a .→

a
e.g. [ 6 ] F. Gürsey and C.H. Tze , ”On the role of division- , Jordan- and related algebras in particle

physics”, Singapore, World Scientific (1996) 461. ↔ related to the number 3 .
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The Yukawa couplings are of the form ( notwithstanding the
quaternionic or octonionic structure of scalar doublets )

H Y =

[
( ϕ 0 ) ∗ , ( ϕ − ) ∗

Φ 0 , − Φ +

]
λ F ′ F ×

×



 εγ̇δ̇ N δ̇

F ′




ν γ̇

` γ̇




F



 + h.c.

N γ̇ F ′ = εγ̇δ̇ N δ̇
F ′ ; εγ̇δ̇ = εγδ = εγδ

(29)

The only allowed Yukawa couplings by SU2 L ⊗ U1 Y invariance
are those in eq. 29 , with arbitrary complex couplings λ F ′ F . →
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Spontaneous breaking of SU2 L ⊗ U1 Y through the vacuum
expected value(s)

〈 Ω |




ϕ 0 Φ +

ϕ − Φ 0


 ( x ) | Ω 〉 =

= 〈 z ( x ) 〉 =




v ch (v u
ch) 0

0 v ch (v d
ch)




v ch = 1√
2

(√
2 G F

) −1/2
= 174.1 GeV

(30)

independent of the space-time point x a →
a

The implied parallelizable nature of 〈 z ( x ) 〉 is by far not trivial and relates in a wider context

including SU2 L − triplet scalar representations to potential (nonabelian) monopoles and dyons.

– p. 28
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induces a neutrino mass term through the Yukawa couplings λ F ′ F

in eq. 29

F ′ N ν F = N γ̇ F ′ ν γ̇
F = ν γ̇ F N γ̇

F ′

µ F ′ F = v ch λ F ′ F

→ H µ = F ′ N µ F ′ F ν F + h.c. = ν T µ T N + h.c.

(31)

The matrix µ defined in eq. 31 is an arbitrary complex 3 × 3 matrix,
analogous to the similarly induced mass matrices of charged
leptons and quarks. In the setting of primary SO10 breakdown , a
general (not symmetric) Yukawa coupling λ F ′ F implies the
existence in the scalar sector of at least two irreducible
representations (10)⊕ (120) a. →

a
key question → a ’drift’ towards unnatural complexity ? It becomes even worse including the

heavy neutrino mass terms : 256 (complex) scalars.
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3b ’Mass from mixing’ in vacuo or ’seesaw’

neutrinos oscillate like neutral Kaons (yes , but how ?) - Bruno Pontecorvo a

The special feature, pertinent to (electrically neutral) neutrinos is,
that the ν− extending degrees of freedomN are singlets under the
whole SM gauge group G SM = SU3 c ⊗ SU2 L ⊗ U1 Y , in
fact remain singlets under the larger gauge group SU5 ⊃ G SM .
This allows an arbitrary (Majorana-) mass term, involving the
bilinears formed from twoN -s.
In the present setup (minimal ν-extended SM) the full neutrino
mass term is thus of the form →

a [ 7 ] Bruno Pontecorvo, ”Mesonium and antimesonium”, JETP (USSR) 33 (1957) 549, english trans-

lation Soviet Physics, JETP 6 (1958) 429. Here let me continue the ’flow of thought’ embedding neutrino

masses in SO10.
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HM = 1
2 [ ν N ] M




ν

N


 + h.c.

M =




0 µ T

µ M


 ; M = M T → M = M T

(32)

Again within primary SO10 breakdown the fullM extends the
scalar sector to the representations (10) ⊕ (120) ⊕ (126) a →

a
It is from here where – to the best of my knowledge – the discussion of the necessarily nonvanishing

nature and of the magnitude of the light neutrino masses (re-) started in 1974 [8] , [9] .

The structure in eq. 32 is reserved for the minimal SU2 L × U1 Y case ’tilted to the left’ [10] .
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Especially the 0 entry needs explanation. It is an exclusive property
of the minimal ν-extension assumed here.
Since the ’active’ flavors ν F all carry I 3 w = 1

2 terms of the form

1
2 F ′ ν χ F ′ F ν F = 1

2 ν T χ ν ; χ = χ T(33)

cannot arise as Lagrangean masses, except induced by an
I w-triplet of scalars, developing a vacuum expected value
independent from the doublet(s) .

’seesaw’ ↗
↙

The relative ’size’ of µ and M shall define the ’mass from mixing’
situation and segregates 3 heavy neutrino flavors from the 3 light
ones :

↙ || µ || � ||M || ↗(34)
→
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Figure 2:
Key questions → which is the scale of M ? O ( 10 10 ) GeV →

is there any evidence for this scale today ? hardly ! → and what about susy ? →
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3c Diagonalization of M

We shall use the generic expansion parameter
ϑ = || µ || / ||M || � 1 – and determine a unitary 6 × 6 matrix
U with the property [11]

M = U M diag U T → M diag =

M diag ( m 1 , m 2 , m 3 ; M 1 , M 2 , M 3 )

0 ≤ m 1 ≤ · · · ≤ M 3 , m 3 � M 1

and U = TU 0 ; T −1M T −1 T = M bl.diag. →

=

(
M 1 0

0 M 2

)
= U 0M diag U T

0

(35)

→
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The matrix T in eq. 35 describes the mixing of light and heavy
flavors, determined from a 3 × 3 submatrix t .

T =




(
1 + t t † )−1/2 (

1 + t t † )−1/2
t

−t † ( 1 + t t † )−1/2 (
1 + t † t

)−1/2




(36)

The upper left 3 × 3 block of T ( eq. 36 )
(

1 + t t † )−1/2
causes

the ( 3 × 3 ) mixing matrix governing oscillations of light
(anti)neutrino’s to deviate from unitarity , i.e. it becomes subunitary,
but by a tiny amount since as we will discuss below

|| t || 2 =
∑ 3

kl=1 | t kl | 2 = O
(

10 −21
)

(37)
→
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The matrix t in eq. 36 is reduced to diagonal form through two
unitary 3 × 3 matrices u and w a

t = u ( tan a diag ) w −1

a diag = a diag ( a 1 , a 2 , a 3 )

0 ≤ a k ≤ π / 2

a k � π / 2 for ϑ = || µ || / ||M || � 1

(38)

t is determined from the quadratic equation

t = µ T M −1 − t µ t M −1(39)

which can be solved recursively →
a

In eq. 38 a diag defines the three (real) heavy-light mixing angles a 1,2,3 , which without loss of

generality can be chosen in the first quadrant, but which are small for ϑ = || µ || / || M || � 1

– p. 36
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setting t n+1 = µ T M −1 − t n µ t n M −1

t 0 = 0 , t 1 = µ T M −1 ,

t 2 = t 1 − µ T M −1 µ µ † M
−1

M −1

· · ·
lim n → ∞ t n = t

(40)

In order to control convergence we introduce← the specific norms
a

|| µ || 2 = tr µ µ †

||M || −2 = tr M −1 M −1 †

ϑ = || µ || / ||M || � 1

(41)

→
a

The sequence defined in eq. 40 is convergent for ϑ < 1 .
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u , w in eq. 38 contain all 9 CP violating phases, pertaining to T .
The above was intended to ’explain’ why the (un)observed light
neutrino masses are so much smaller than charged fermion ones.
key question → does it ? wait . t = u ( tan a diag ) w −1 defined in eq. (38)
and its determining equation, repeated below

t = µ T M −1 − t µ t M −1

ensure block diagonal form ofM bl.diag. .

M bl.diag. = T −1M T −1 T

M bl.diag. =

(
M 1 0

0 M 2

)
(42)

→
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(M 1 , M 2 ) formingM bl.diag. defined in eq. 42 become

M 1 =
(

1 + t t † )−1/2 ×
×
[
− t µ − µ T t T + t M t T

]
×

×
(

1 + t t † )−1/2 T

M 2 =
(

1 + t † t
)−1/2 ×

×
[
µ t + t † µ T + M

]
×

×
(

1 + t † t
)−1/2 T

(43)

ComparingM 1 with tM 2 t T we find →

– p. 39



18nm

the relation a , [ 12 ]

M 1 = − tM 2 t T(44)

It follows from the assumptions detailed in footnote a , that
Det t 6= 0 and hence the heavy-light mixing angles a 1,2,3 > 0
defined in eq. 38 are strictly bigger than 0.
The lowest approximation, t → t 1 and andM 2 → M , yields
the first nontrivial approximation of the light neutrino mass matrix
in ’second order mixing’

M 1 ∼M (2)
1 = − µ T M −1 µ(45) →

a
In the scenario adopted here, we further assume Det M 6= 0 and Det µ 6= 0. This leaves no

room for light ’sterile’ neutrinos, which would imply a nonminimal ν−extension of the standard model.
This would be mandatory, if the results of the LSND collaboration are correct. [ 12 ] G.B. Mills for the
LSND Collaboration , ’Results on neutrinos from LSND’ , published in *Stanford 1998, Gravity from
the Hubble length to the Planck length* 467-475, see the MiniBooNE Experiment [13] .
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Remaining dagonalization of M bl.diag.

We go back to eq. 35 U = T U 0 :
U 0 diagonalizes the 3× 3 blocksM 1 , M 2

a

T −1M T −1 T = M bl.diag. ; M bl.diag. =

(
M 1 0

0 M 2

)

U 0 =

(
u 0 0

0 v 0

)
∼ U 0 I ; I = I diag (± 1 , · · · , ± 1 )

M 1 = u 0 m diag ( m 1 , m 2 , m 3 ) u T
0

M 2 = v 0 M diag ( M 1 , M 2 , M 3 ) v T
0

; M 1 = − tM 2 t T

(46) →
a
U 0 is determined modulo diagonal (orthogonal , 6 × 6) matrices I = I diag as shown

in eq. 46 , representing the discrete abelian group ( Z 2 ) ⊗ 6 .
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T is constructed as a sequence ( eq. 40 ) , convergent for
ϑ = || µ || / ||M || < 1, as shown above , and thus unique.
As a consequence of eqs. 44 , 46 – t beeing determined (within T )
–M 1 andM 2 and hence also u 0 and v 0 are not independent of
each other. We shall keep as independent variablesM 1 and t
(or equivalently T ) .

4 Generic mixing and mass estimates

Here we introduce the arithmetic mean measure for 3 × 3 matrices
A , not to be confused with the norms || . || defined in eq. 41

| A | = |Det A | 1/3(47)

Eq. 44 then implies →
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| M 1 | / | M 2 | = | t | 2

| M 1 | =
∣∣m diag

∣∣ = ( m 1 m 2 m 3 ) 1/3

| M 2 | =
∣∣M diag

∣∣ = ( M 1 M 2 M 3 ) 1/3

(48)

We consider the arithmetic mean of the light and heavy neutrino
masses and the coorresponding ’would be’ masses if µ and µ T

would be the only parts of the full 6 × 6 mass matrixM
m = ( m 1 m 2 m 3 ) 1/3

M = ( M 1 M 2 M 3 ) 1/3

µ = u µ µ diag ( µ 1 , µ 2 , µ 3 ) v −1
µ

µ = ( µ 1 , µ 2 , µ 3 ) 1/3

(49)

→
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Then beyond eq. 48 there is one more (exact) relation a

t̂ = ( tan a 1 tan a 2 tan a 3 ) 1/3 = | t |
| µ | 2 = | M 1 | | M 2 | →

m / µ = t̂ , m / M = t̂ 2

or equivalently

m = t̂ µ
↗

↙ M = t̂ −1 µ

seesaw ( of type I )

(50)

→
a

for MSSM inspired seesaw of type II realizations see e.g. [14] .
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The estimates below are based on the assumption that the scalar
doublets (2) are part of a complex 10-representation of SO10 with
Yukawa couplings of the form

H Y = λ F ′ F




16 16 10

B A D




F ′f B f A F

+ h.c.

→ λ F ′ F = λ F F ′

(51)

It follows that at the unification scale we have a →
a

In order to obtain a general (not a symmetric) heavy-light mass matrix µ a combination of SO10

representations (120) ⊕ (10) is needed, which however would ’destroy’ the mass relation in eq. 51 .

key question → is this relevant ? estimate shall be estimate .
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µ = µ T = µ u(52)

We shall use the relation at a scale near 100 GeV

µ ∼ 1
3 ( µ u )(53)

The factor 1
3 accounts for the color rescaling reducing the (colored)

up-quark mass matrix from the unification scale down to 100 GeV .
It follows using the definitions in eq. 49 and the quark masses
m u ∼ 5.25 MeV , m c ∼ 1.25 GeV and m t ∼ 180 GeV

µ u = ( m u m c m t ) 1/3 ∼ 1 GeV →

µ ∼ 1
3 GeV

(54)

→
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Further lets approximate the mass square differences obtained
from the combined neutrino oscillation measurements by

∆ m 2
1 2 ∼ 10 −4 eV 2

∆ m 2
2 3 ∼ 2.5 10 −2 eV 2 ,

(55)

Finally ’pour fixer les idées’ I set the lowest light neutrino mass
∼ 1 meV and assume hierarchical (123) light masses. This implies

m 1 ∼ 1 meV , m 2 ∼ 10 meV

m 3 ∼ 50 meV → m ∼ 8 meV
(56)

→
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It follows from eq. 50

t̂ = m / µ ∼ 2.4 10 −11

M = µ / t̂ ∼ 1.4 10 10 GeV

t̂ 2 ∼ 5.8 10 −22

(57)

Light neutrino masses are indeed small.
a

5 Why is the large mass - scale so large ? – tentative thoughts →

a
puzzling questions → is susy bringing down in ’small steps’ the B-L protecting mass scale

M = ∼ 1.4 . 10 7 TeV to 1 TeV ? – Or is M = ∼ 1.4 . 10 7 TeV in view of seesaw type II too small ?

µ → e γ at a rate of ?
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– tentative thoughts

1) Exact symmetries are all (?) linked to unbroken gauge fields .

The most difficult such form the substrate of gravity , with

base quanta of spin 2 , which yet expose a characteristic

high (mass-) scale

m Pl = ( G N ) −1/2 ( ~, c ) 1/2 ∼ 1.22 . 10 19 GeV / c 2(58)

Next in line of unbroken gauge fields are charge-like gauge bosons

base quanta of spin 1 with gauge group

G 3 = SU3 c × U1 e.m.(59)

The substrate of fermions , carrying the charges of G 3 contains

the three families , with neutrino flavors omitted →
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in the left - chiral basis ( eq. 1 ) for one family
(

u 1 u 2 u 3 ν | N û 3 û 2 û 1

d 1 d 2 d 3 e − | e + d̂ 3 d̂ 2 d̂ 1

) γ̇ → L

= ( f ) γ̇

(60)

The scales of fermion masses, while parameters within the

conserved gauge interactions of G 3 arise exclusively through

spontaneous breaking of the SM interactions with gauge group

G SM = SU3 c × SU2 L × U1 Y

( Q e.m. / e = I 3 w + Y ; I 3 w = I 3 L ) f

(61)

→

– p. 50



3tt

through Yukawa couplings to one ( 2 ) doublets of scalars

as defined in eq.28


ν N

` ̂̀




F
↔




ϕ 0 Φ +

ϕ − Φ 0


 = z(62)

in straightforward generalizations of eq. 29

H Y =

[
( ϕ 0 ) ∗ , ( ϕ − ) ∗

Φ 0 , − Φ +

]
λ F ′ F ×

×



 εγ̇δ̇ N δ̇

F ′

[
ν γ̇

` γ̇

]

F



 + h.c.

(63)

→
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This way a plethora of base fermion masses is generated a

m u ∗ = 5.25 MeV m c m c
∼ 1.3 GeV m t ∼ 170 GeV

m d ∗ = 8.75 MeV m s ∗ = 175 MeV m b m b
∼ 4.2 GeV

m e = 0.511 MeV m µ = 105.7 MeV m τ = 1.777 GeV

(64)

The mass values in eq. 64 represent a downfeed from the broken gauge sector of the SM

into parameter space of the SU3 c × U1 e.m. unbroken gauge sector .

While the so induced mass scales overlap with the electroweak (breaking) scale(s) ,

the central scale of strong interactions (QCD) is not generated the same way :

it can be represented by the nucleon mass in the limit m u,d → 0 or the inverse slope

of Regge trajectories

M N ( m u,d → 0 ) ∼ 0.9 GeV ; 1 / α
′ ∼ 1.02 GeV(65)

→
a

For the quark masses in the MS scheme – say – a reference scale µ must be specified :

∗ stands here for µ ∼ 1 GeV [15] , [16] .
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2) Hence we are led to include – through the intertwined nature

of scales – as next step G SM alongside G 3 , where

a typical scale characterizing electroweak gauge breaking

can be taken as

v ch = 1√
2

(√
2 G F

) −1/2
= 174.1 GeV(66)

We face the appearance of 3 spin 1/2 fermion families ,

90 (96) degrees of freedom excluding (including) heavy neutrino

flavors . In this connection the nature of global , ungauged

charge-like symmetries : exactly↔ approximately conserved

B , LF , L =
∑

F L F , B − L

becomes an urgent question .
→
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Individual B and L F conservations are broken by anomalies in the
SM , whereas B − L without minimal neutrino mass extension to
N F flavors – B − L (15) is broken by a graviational anomaly

d 4 x
√
| g | D µ j

B − L (15)
µ = 3 Â 1 ( X )

Â 1 ( X ) = − 1
24 trX 2

( X ) a
b = 1

2 π
1
2 d x µ ∧ d x ν

(
R a

b

)
µ ν

(
R a

b

)
µ ν

:
Riemann curvature tensor

mixed components :
a

b → tangent space

µ ν → covariant space

D µ j
B − L (16)
µ = 0

(67)

In eq. 67 Â ( X → λ ) = 1
2 λ / sinh ( 1

2 λ ) →

– p. 54



7tt

denotes the Atiyah - Hirzebruch character or Â− genus [17] with
its integral over a compact , euclidean signatured closed manifold
M 4 , capable of carrying on SO4 - spin structure , becomes the
index of the associated elliptic Dirac equation

∫
Â ( X E ) = n R − n L = integer(68)

In eq. 68 n R,L denote the numbers of right - and left - chiral
solutions of the Dirac equation on M 4 . The index E → X E shall
indicate the euclidean transposed curvature 2 - form , opposite to
physical uncurved space time [18] .
For the latter case the first relation in eq. 67 yields the integrated
form – in the limit of infinitely heavy N F – →
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∆ R−L n ν =

∫
d 4 x

√
| g | D µ j

B − L (15)
µ = 3 ∆ n ( Â )

3 = number of families = odd ; m ν F
→ 0

(69)
In eq. 69 ∆ R−L n ν denotes the difference of right - chiral ( ν̂ )
and left - chiral ( ν ) flavors between times t → ±∞ .
Here a subtlety arises precisely because the number of families on
the level of G SM is odd , and the light neutrino flavors are not
’Dirac - doubled’ , which according to eq. 69 could potentially lead
to a change in fermion number beeing odd , which violates the

rotation by 2 π symmetry , equivalent to Θ̂ 2 , unless

∆ n ( Â ) = even (
√

for dim = 4 mod 8 )(70)
→
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This leads to the following collection of questions undecidable ( or unanswerable ) within the SM and with

this on the level of scales characteristic of electroweak gauge breaking

questions potential answers

at unknown scale

3 colors ? octonion structure

3 families ? → exceptional groups

quantized elementary electric charges ?

1

replica-

product of

9
>>=
>>;

charge-like simple gauge group(s)

origin of the ’tilt to the left’ ? no anwer but : what means left ?

B , B - L violation driven by M ∼ 10 10 GeV ? large scale protects at low scale

spins other than 0 , 1
2

, 1 , 2 supersymmetry , supergravity

d = 1 + 3 dimensions and gravity ? target space ↔ base space

→
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3) Apparent paradox of unification of forces and stability of large , primary

breakdown scales of order M ∼ 10 10 GeV −− m Pl ∼ 10 19 GeV

In a concluding remark ( not a conclusion ) let me point out that the example of the large scale

inherent in heavy neutrino masses is not only responsible for the small masses of observed

neutrino flavors , but at the same time the stability of M ∼ 10 10 GeV – a key feature

unexplained so far – serves as protecting scale for the approximative conservation of leptonic

(as well as baryonic) numbers at electroweak scales much below M .

As a consequence even a unified charge-like gauge group SO10 , E6 · · · acts first

through a primary breakdown of local gauge invariance at scales M unif ∼ 10 16 GeV ,

which produces essential deviations from unified symmetries .

asymmetry is the sister of symmetry

- - - - - - -
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A1 Appendix 1
“

bC , bP , bT
”

Combining eqs. 12 and 14 it follows , for bC , bP
“ ˘

f (C)
¯ (P )

”
= ( − i C f ∗ ( Px ) ) =

`
i γ 0 f (C) ( Px )

´
=

“
{↔| f } (P )

”
(
√

)

bC bP ∼ bP bC ; bP 2 ∼ − ¶
(71)

The symbol ∼ in eq. 71 shall indicate that the operators are restricted to their action on the fermion

families ( f ) ♦A and their (re)projectable chiral L and R bases .

For bC , bT we have
“ ˘

f (C)
¯ (T )

”
= ( C γ 0 C γ 5 f ∗ ( Tx ) ) = ( C γ 5 C γ 0 f ∗ ( Tx ) )

=
“
{↔| f } (T )

” (
√

)

bC bT ∼ bT bC ; bT 2 ∼ − ¶

(72)

We note without explicit proof

bT bP ∼ − bP bT(73)

→
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We repeat eq. 17 as eq. 74 below

bΘ −1
`

f γ̇ ( x )
´ bΘ =

`
i

˘
f γ̇

¯ ∗
( −x )

´

bΘ −1 ( f α ( x ) ) bΘ = ( − i { f α } ∗ ( −x ) )

f α ( y ) = ε αγ

˘
f γ̇

¯ ∗
( y )

(74)

From the last relation in eq. 74 we obtain

bΘ −1 f α ( y ) bΘ = ε αγ

n
bΘ −1 f γ̇ bΘ

o ∗

( y ) = − i ε αγ f γ̇ ( −y )

= ( − i )
˘

ε αγ

`
f γ̇

´ ∗
( −y )

¯ ∗

= ( − i ) { fα } ∗ ( −y ) (
√

)

bΘ 2 ∼ − ¶
(75)
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A2 Appendix 2 : chiral projection onto chiral bases γ̇ → L and α → R

We report from eq. 6
0
B@

u 1 u 2 u 3 ν | N bu 3 bu 2 bu 1

d 1 d 2 d 3 e − | e + bd 3 bd 2 bd 1

1
CA

γ̇ → L

=

0
B@

f 1 f 2 f 3 f 4 | f 9 f 10 f 11 f 12

f 5 f 6 f 7 f 8 | f 13 f 14 f 15 f 16

1
CA

γ̇ → L

↘↙
0
B@

f 4 | f 9

f 8 | f 13

1
CA

γ̇ → L

=
“

` | b̀
”

γ̇ → L

(76)

→
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γ̇ → L ↔ α → R : ( f r ) α = ε α γ

n
( f r ) γ̇

o∗

; r = 1, · · · , 16

( ↔| f ) α =

=

0
B@

f 12 f 11 f 10 f 9 | f 4 f 3 f 2 f 1

f 16 f 15 f 14 f 13 | f 8 f 7 f 6 f 5

1
CA

α → R

=

0
B@

u 1 u 2 u 3 bN | bν bu 3 bu 2 bu 1

d 1 d 2 d 3 e − | e + bd 3 bd 2 bd 1

1
CA

α → R↘↙
0
B@

f 9 | f 4

f 13 | f 8

1
CA

α → R

=
“

b̀ | `
”

α → R

(77)

→
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Collecting both chiral projections on (anti-)lepton f lavors in eqs. 76 and 77 we obtain

“
` | b̀

”
γ̇ → L

=

0
B@

ν | N

e − | e +

1
CA

γ̇ → L

“
b̀ | `

”

α → R

=

0
B@

bN | bν

e − | e +

1
CA

α → R

bN α = ε αγ

˘
N γ̇

¯ ∗
,

`
e −

´
α

= ε α γ

n `
e +

´ γ̇
o ∗

bν α = ε αγ

˘
ν γ̇

¯ ∗
,

`
e +

´
α

= ε α γ

n `
e −

´ γ̇
o ∗

and ↔ h.c.

(78)
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mathématiques et la théorie des champs’,CNRS Paris 1959, 105,

’CTP-Invarianz der Streumatrix und interpolierende Felder’ , Helv.

Phys. Acta 36 (1963) 572 , ”The general theory of quantized

fields” , Amer. Math. Soc. , Providence , R. I. , 1965 . →

– p. 64



r2

References

[3] O. W. Greenberg , ’Why is CPT fundamental ?’ ,
Found.Phys. 36 (2006) 1535 , hep-ph/0309309 .

[1] Ettore Majorana , ’Su una teroia simmetrica dell’ elettrone e
del positrone’ , Nuovo Cimento 14 (1937) 171 .

[4] P. Minkowski , ’Neutrino oscillations , a historical overview’ ,
Contributed to 11th International Workshop on Neutrino
Telescopes, Venice, Italy, 22-25 Feb 2005 , published in *Venice
2005, Neutrino telescopes* 7-27 , hep-ph/0505049 , extended
version in vencice30.pdf . →

– p. 65



r3

References

[5] H. Fritzsch and P. Minkowski , ’Unified interactions of leptons
and hadrons’ , Annals Phys.93 (1975) 193 and
H. Georgi , ’The state of the art - gauge theories’ , AIP
Conf.Proc.23 (1975) 575 .

[6] F. Gürsey and C.H. Tze , ’On the role of division- , Jordan- and
related algebras in particle physics’ , Singapore, World
Scientific (1996) 461.

[7] B. Pontecorvo , ’Mesonium and antimesonium’, JETP (USSR)
33 (1957) 549 , english translation Soviet Physics , JETP 6
(1958) 429 . →

– p. 66



r4

References

[8] H. Fritzsch, M. Gell-Mann and P. Minkowski , ’Vector - like
weak currents and new elementary fermions’ , Phys.Lett.B59
(1975) 256 .

[9] H. Fritzsch and P. Minkowski , ’Vector - like weak currents,
massive neutrinos, and neutrino beam oscillations’ ,
Phys.Lett.B62 (1976) 72 .

[10] P. Minkowski , ’µ → eγ at a rate of one out of 1-billion muon
decays ?’ , Phys.Lett.B67 (1977) 421 .

[11] C. Heusch and P. Minkowski , ’Lepton flavor violation induced
by heavy Majorana neutrinos’ , Nucl.Phys.B416 (1994) 3 . →

– p. 67



r5

References

[12] G.B. Mills for the LSND Collaboration , ’Results on neutrinos
from LSND’ , published in *Stanford 1998, Gravity from the
Hubble length to the Planck length* 467-475 .

[13] A.A. Aguilar-Arevalo et al., the MiniBooNE Collaboration ,
’A search for electron neutrino appearance at the
∆ m 2 ∼ 1 eV 2 scale’, FERMILAB-PUB-07-085-E,
LA-UR-07-2246, April 2007. 6pp., Phys.Rev.Lett.98 (2007)
231801 , arXiv:0704.1500 [hep-ex] . →

– p. 68



r6

References

[14] H.S. Goh, R.N. Mohapatra, and S. Nasri , ’SO(10) symmetry
breaking and type II seesaw’ , Phys.Rev.D70 (2004) 075022 ,
hep-ph/0408139 .
S. Antusch and S. F. King , ’Leptogenesis in unified theories
with type II see-saw’ , JHEP 0601 (2006) 117 , hep-ph/0507333 .

[15] J. Gasser and H. Leutwyler , ’Quark masses’ , Phys.Rept.87
(1982) 77 ,
P. Minkowski , notes .
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