Neutrino flavors light and heavy – how heavy ?

Peter Minkowski University of Bern

II. workshop on flavor physics, Albufeira, 3. - 10. November 2007 -

List of contents

Minimal ν -extension of fermion families – left - and right chiral bases	4
Dirac like pairing of $(\ {\leftrightarrow}\ f\)\ _{lpha}$ and $(\ f\)\ ^{\dot{\gamma}}$	7
$\widehat{C} \ , \ \widehat{P} \ , \ \widehat{T} \ ightarrow \ \widehat{\Theta} \ = \ \widehat{C} \ \widehat{P} \ \widehat{T}$	14
Projecting out leptons and antileptons	18
Mass and mass from mixing	22
Yukawa interactions and mass terms	26
'Mass from mixing' in vacuo or 'seesaw'	30
Generic mixing and mass estimates	42
Why is the large mass - scale so large ? - tentative thoughts	48
Appendix 1 $\left(\widehat{C},\widehat{P},\widehat{T} ight)$	59
Appendix 2 : chiral projection onto chiral bases $\ \dot{\gamma} ightarrow L$ and $\ _{lpha} ightarrow R$	61
References	64
	Minimal ν -extension of fermion families – left - and right chiral bases Dirac like pairing of $(\Leftrightarrow f)_{\alpha}$ and $(f)^{\dot{\gamma}}$ $\hat{C}, \hat{P}, \hat{T} \rightarrow \hat{\Theta} = \hat{C} \hat{P} \hat{T}$ Projecting out leptons and antileptons Mass and mass from mixing Yukawa interactions and mass terms 'Mass from mixing' in vacuo or 'seesaw' Generic mixing and mass estimates Why is the large mass - scale so large ? – tentative thoughts Appendix 1 $(\hat{C}, \hat{P}, \hat{T})$ Appendix 2 : chiral projection onto chiral bases $\dot{\gamma} \rightarrow L$ and $_{\alpha \rightarrow R}$ References

c1

A1 Appendix 1
$$\left(\widehat{C}, \widehat{P}, \widehat{T} \right)$$
 59

A2 Appendix 2 : chiral projection onto chiral bases $\dot{\gamma} \rightarrow L$ and $\alpha \rightarrow R$ 61 References 64

1 Minimal ν -extension of fermion families – left - and right chiral bases

$$\begin{pmatrix} u^1 & u^2 & u^3 & \nu & | & \mathcal{N} & \widehat{u}^3 & \widehat{u}^2 & \widehat{u}^1 \\ d^1 & d^2 & d^3 & e^- & | & e^+ & \widehat{d}^3 & \widehat{d}^2 & \widehat{d}^1 \end{pmatrix}^{\dot{\gamma} \to L}$$

(1)
$$= (f)^{\dot{\gamma}} \qquad \text{left chiral} \leftrightarrow \dot{\gamma}=1,2$$
$$(f)_{\alpha} = \varepsilon_{\alpha \gamma} \left\{ (f)^{\dot{\gamma}} \right\}^{*} = \text{right chiral} \leftrightarrow \alpha=1,2$$
$$\begin{pmatrix} \hat{u}^{1} & \hat{u}^{2} & \hat{u}^{3} & \hat{\nu} & | & \hat{\mathcal{N}} & u^{3} & u^{2} & u^{1} \\ \hat{d}^{1} & \hat{d}^{2} & \hat{d}^{3} & e^{+} & | & e^{-} & d^{3} & d^{2} & d^{1} \end{pmatrix}_{\alpha \to R}$$

and family $~1~\rightarrow~2~\rightarrow~3$.

In eq. 1 * denotes the operation of hermitian conjugation in field variable space f(x), whereas $\varepsilon_{\alpha\gamma}$ denotes the symplectic or Lorentz-invariant 2×2 matrix

(2)
$$\varepsilon_{\alpha \gamma} = i (\sigma_2)_{\alpha \gamma} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

If the spinor indices are suppressed, the two bases shall be denoted by L, R as indicated in eq. 1.

The symbols — represent a mirror between the left and right sides of components . This allows the mirror operation , which we exemplify acting on the right chiral basis (eq. 1) denoted \leftrightarrow —

1a Dirac like pairing of ($\leftrightarrow f$) $_{\alpha}$ and (f) $^{\dot{\gamma}}$

To be definite we can also label the components in the left chiral and right chiral bases in eqs. 1 and 3 with numbers (1-16) as shown in eq. 6 below .

Using the so defined 'flavor' components $r = 1, \cdots, 16$ the mirror operation corresponds to the involution in 'flavor' number

This corresponds to

 $(5) \quad \left\{ \left(\leftrightarrow f \right)^s = \left(f \right)^r \right\}^{\dot{\gamma} \to L} \quad \text{or } \alpha \to R \; ; \; s = s \left(r \right) \quad .$

$$\begin{pmatrix} u^{1} & u^{2} & u^{3} & \nu & | & \mathcal{N} & \hat{u}^{3} & \hat{u}^{2} & \hat{u}^{1} \\ d^{1} & d^{2} & d^{3} & e^{-} & | & e^{+} & \hat{d}^{3} & \hat{d}^{2} & \hat{d}^{1} \end{pmatrix}^{\dot{\gamma} \to L}$$

$$= \begin{pmatrix} f^{1} & f^{2} & f^{3} & f^{4} & | & f^{9} & f^{10} & f^{11} & f^{12} \\ f^{5} & f^{6} & f^{7} & f^{8} & | & f^{13} & f^{14} & f^{15} & f^{16} \end{pmatrix}^{\dot{\gamma} \to L}$$

$$\dot{\gamma} \to L \leftrightarrow \alpha \to R : (f^{r})_{\alpha} = \varepsilon_{\alpha \gamma} \left\{ (f^{r})^{\dot{\gamma}} \right\}^{*}; r = 1, \cdots, 16$$

$$(\leftrightarrow f)_{\alpha} =$$

$$\begin{pmatrix} f^{12} & f^{11} & f^{10} & f^{9} & | & f^{4} & f^{3} & f^{2} & f^{1} \\ f^{16} & f^{15} & f^{14} & f^{13} & | & f^{8} & f^{7} & f^{6} & f^{5} \end{pmatrix}_{\alpha \to R}$$

Merging the spinor components according to eq. 7 generates Dirac doubling $\left\{ \begin{array}{cc} \alpha \to R \end{array} \uplus \begin{array}{c} \dot{\gamma} \to L \end{array} \right\} \to \Diamond A \ ; \ \Diamond A = 1, \cdots, 4 \longrightarrow C$

The so doubled full 16-multiplet has to be treated with special attention for the neutrino-antineutrino fields , which in the $\Diamond A \rightarrow L \& R$ - basis I denote by $(n, \hat{n})_{\Diamond A}$

(8)
$$n_{\Diamond A} = \begin{pmatrix} \widehat{\mathcal{N}}_{\alpha} \\ \nu^{\dot{\gamma}} \end{pmatrix} , \quad \widehat{n}_{\Diamond A} = \begin{pmatrix} \widehat{\nu}_{\alpha} \\ \mathcal{N}^{\dot{\gamma}} \end{pmatrix}$$

$$\widehat{\mathcal{N}}_{\alpha} = \varepsilon_{\alpha\gamma} \left\{ \mathcal{N}^{\dot{\gamma}} \right\}^{*} , \ \widehat{\nu}_{\alpha} = \varepsilon_{\alpha\gamma} \left\{ \nu^{\dot{\gamma}} \right\}^{*}$$

The heavy neutrino states (not stable ones) are mainly absorbed and created by the fields $\mathcal{N}, \, \widehat{\mathcal{N}}$.

The reversed assignments of $\mathcal{N} \leftrightarrow \widehat{\mathcal{N}}$ relative to $\nu \leftrightarrow \widehat{\nu}$ in eqs. 1 - 8 is just a matter of convention , but better suited once one of the chiral bases is selected .

Lets also associate 16 base fields to the doubled basis $(f)_{\diamondsuit A}$

(9)
$$\begin{pmatrix} u^{1} & u^{2} & u^{3} & n & | & \hat{n} & \hat{u}^{3} & \hat{u}^{2} & \hat{u}^{1} \\ d^{1} & d^{2} & d^{3} & e^{-} & | & e^{+} & \hat{d}^{3} & \hat{d}^{2} & \hat{d}^{1} \end{pmatrix}_{\Diamond A}$$
$$= (f)_{\Diamond A}$$

with the numbering of components $(|f|^r|)_{\diamondsuit A}$ as in eqs. 4 - 6 .

Then charge conjugation (as an operation , not a symmetry) relates $(\leftrightarrow f)_{\Diamond A} \leftrightarrow (f)_{\Diamond A}$

(10)
$$(C \gamma_0)_{\Diamond A \Diamond B} \{ (\leftrightarrow f^r)_{\Diamond B} \}^* = (f^r)_{\Diamond A}$$
$$r = 1, \cdots, 16$$

In eq. 10 we have *reported* the irreducible Lorentzian structure inherent in both chiral bases (L, R). This is equivalent to the d = 1 + 3 chiral representation of the γ_{μ} matrices in the associated $\Diamond A$ basis

$$\gamma_{\mu} = \begin{pmatrix} 0 & \sigma_{\mu} \\ \tilde{\sigma}_{\mu} & 0 \end{pmatrix}; \quad \begin{array}{l} \sigma_{\mu} = (\sigma_{0}, \sigma_{0}) \\ \tilde{\sigma}_{\mu} = (\sigma_{0}, -\sigma) \end{cases}; \quad \sigma_{0} = \P, \sigma_{1,2,3} : \text{Pauli matrices} \\ \gamma_{5R} = \frac{1}{i} \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3} = \begin{pmatrix} \P & 0 \\ 0 & -\P \end{pmatrix} = -\gamma_{5L}; \quad C = \begin{pmatrix} \varepsilon & 0 \\ 0 & -\varepsilon \end{pmatrix} = \frac{1}{i} \gamma_{0} \gamma_{2} \end{array}$$

 $\gamma_{\mu} = \eta_{\mu\nu} \gamma^{\nu}; \ \eta_{\mu\nu} = diag(1, -1, -1, -1):$ uncurved space-time metric (11)

Dropping for a moment the spinor indices $\Diamond A$, \cdots we associate with the involutory operation defined in eq. 10 a unitary transformation , denoted \hat{C} , $\hat{C}^2 = \P$ – charge conjugation

(12)
$$\widehat{C}^{-1} f \widehat{C} = C \gamma_0 \{ f \}^* \equiv f^{(C)}$$

$$\widehat{C}^{-1} f^* \widehat{C} = C \gamma_0 f \rightarrow \left(f^{(C)} \right) \equiv (\Leftrightarrow f) \leftrightarrow$$

$$\left(\left\{ f^{(C)} \right\}^{(C)} \right) = (\leftrightarrow (\Leftrightarrow f)) = (f)$$

On the 'side' it follows from eq. 12

(13) $(C \gamma_0)^2 = \P$

$$\mathbf{1b} \quad \widehat{C} \,, \, \widehat{P} \,, \, \widehat{T} \,\to \, \widehat{\Theta} \,= \, \widehat{C} \, \widehat{P} \, \widehat{T}$$

We continue with the discrete unitary transformation \widehat{P} associated with parity and the antiunitary one \widehat{T} corresponding to time reversal , neither of which is a symmetry . Beginning with parity we associate to it the transformation , component by component (f^r) $_{\Diamond A}$ in the $\Diamond A$ basis , suppressing the spinor index (as in eq. 12)

$$\widehat{P}^{-1}(f(x))\widehat{P} = (i\gamma_0 f(Px)) = \left(f^{(P)}(x)\right)$$
$$\widehat{T}^{-1}(f(x))\widehat{T} = (C\gamma_5 f(Tx)) = \left(f^{(T)}(x)\right)$$

 $\gamma_{5} = +\gamma_{5R} + \text{to be definite}$ $x = (x^{0}, \vec{x}) ; Px = (x^{0}, -\vec{x}) ; Tx = (-x^{0}, \vec{x})$ (14)

The mirror relation in eq. 12 is algebraic , so we must check the consistency of the \widehat{P} , \widehat{T} operators as defined in eq. 14 . We do this in appendix 1 , from where we report (from eqs. 71 - 73)

(15)
$$\widehat{C}^{2} \sim \P, \ \widehat{P}^{2} \sim -\P, \ \widehat{T}^{2} \sim -\P \\ \widehat{C} \ \widehat{P} \sim \widehat{P} \ \widehat{C}, \ \widehat{C} \ \widehat{T} \sim \widehat{T} \ \widehat{C}, \ \widehat{P} \ \widehat{T} \sim -\widehat{T} \ \widehat{P}$$

Next we turn to the antiunitary symmetry $\widehat{\Theta} = \widehat{C} \, \widehat{P} \, \widehat{T}$

$$\widehat{\Theta}^{-1} (f(x)) \widehat{\Theta} = \left(C \gamma_0 \left(\frac{1}{i} \right)^* \gamma_0 C \gamma_5 f^* (-x) \right) \\ = \left(\frac{1}{i} \gamma_5 f^* (-x) \right) \\ \widehat{\Theta}^2 = \widehat{C} \widehat{P} \widehat{T} \widehat{C} \widehat{P} \widehat{T} \sim \widehat{P} \widehat{T} \widehat{P} \widehat{T} \sim -\widehat{P} \widehat{T}^2 \widehat{P} \sim - \P$$

$$16)$$

We project back the action of $\widehat{\Theta}$ [1'] [2] to the left and right chiral bases respectively (eq. 7), which is equivalent to replacing $\gamma_5 = \gamma_{5R}$ in eq. 16 by - 1 for the left chiral - and by + 1 for the right chiral components

$$\widehat{\Theta}^{-1} \left(f^{\dot{\gamma}}(x) \right) \widehat{\Theta} = \left(i \left\{ f^{\dot{\gamma}} \right\}^* (-x) \right)$$

$$\widehat{\Theta}^{-1} \left(f_{\alpha}(x) \right) \widehat{\Theta} = \left(-i \left\{ f_{\alpha} \right\}^* (-x) \right)$$

$$f_{\alpha}(y) = \varepsilon_{\alpha\gamma} \left\{ f^{\dot{\gamma}} \right\}^* (y)$$

The 3 relations in eq. 17 are not independent and checked for consistency in appendix 1, from where we also recover the relation (18) $\widehat{\Theta}^2 \sim -\P \rightarrow (-1)^{\#f} =$ fermion number parity

A few remarks as to $\widehat{\Theta}$ [3] are given here :

1) $\widehat{\Theta}$ combines two intertwined operations

(19)
$$\begin{aligned} f^{\dot{\gamma}}(x) \to \left\{ f^{\dot{\gamma}} \right\}^*(x) &= g^{\gamma}(x) \quad ; \quad g^{\gamma} f_{\gamma}' : \text{Lorentz (pseudo)scalar} \\ x \to -x &= P T x \quad : \quad \text{space-time inversion} \end{aligned}$$

- 2) Space-time inversion is *not* a local transformation , and only unambiguously defined in uncurved space-time .
- 3) Hence 2) implies that upon inclusion of gravity the proof that $\widehat{\Theta}$ is an (antunitary) symmetry cannot be inferred from locality and Lorentz invariance pertinent to uncurved space-time .
- 4) A subtle question arises : is there in the general case an extension of $\widehat{\Theta}$ which continues to be an antihermitian genuine symmetry ?

2 Projecting out leptons and antileptons

We go backwards along the developed bases , starting with $\Diamond A$ (eqs. 8 and 9)

1ne

The mirror reflection defined in eq. 6 is naturally projected on the lepton fields , as defined in eq. 20 , where we have introduced the shorthand as displayed in eq. 22 below , wherein we extend charge conjugation to the chiral components of charged leptons e^{\pm}

$$(e^{+})_{\alpha} = \varepsilon_{\alpha\gamma} \left\{ (e^{-})^{\dot{\gamma}} \right\}^{*}$$

$$(e^{-})_{\alpha} = \varepsilon_{\alpha\gamma} \left\{ (e^{+})^{\dot{\gamma}} \right\}^{*}$$

$$(e^{+})^{\dot{\gamma}} = \widetilde{\varepsilon}^{\dot{\gamma}\dot{\alpha}} \left\{ (e^{-})_{\alpha} \right\}^{*}$$

$$(e^{-})^{\dot{\gamma}} = \widetilde{\varepsilon}^{\dot{\gamma}\dot{\alpha}} \left\{ (e^{+})_{\alpha} \right\}^{*}$$

$$\widetilde{\varepsilon}^{\dot{\gamma}\dot{\alpha}} \equiv \widetilde{\varepsilon}^{\gamma\alpha} = \varepsilon_{\alpha\gamma} \equiv \varepsilon_{\dot{\alpha}\dot{\gamma}}$$
in matrix form, $^{t} = \text{transposed} : \widetilde{\varepsilon} = \varepsilon^{-1} = \varepsilon^{t} = -\varepsilon$

$$\ell_{\Diamond A} = \begin{pmatrix} n \\ e^{-} \end{pmatrix}_{\Diamond A} ; \quad \hat{\ell}_{\Diamond A} = (C\gamma_{0})_{\Diamond A \Diamond B} \{\ell_{\Diamond B}\}^{*}$$

and $L \leftrightarrow \hat{L}$
$$\hat{\ell}_{\Diamond A} = \begin{pmatrix} \hat{n} \\ e^{+} \end{pmatrix}_{\Diamond A}$$
$$n_{\Diamond A} = \begin{pmatrix} \hat{N}_{\alpha} \\ \nu^{\dot{\gamma}} \end{pmatrix} , \quad \hat{n}_{\Diamond A} = \begin{pmatrix} \hat{\nu}_{\alpha} \\ N^{\dot{\gamma}} \end{pmatrix}$$
$$e_{\Diamond A}^{-} = \begin{pmatrix} (e^{-})_{\alpha} \\ (e^{-})^{\dot{\gamma}} \end{pmatrix} , \quad e_{\Diamond A}^{+} = \begin{pmatrix} (e^{+})_{\alpha} \\ (e^{+})^{\dot{\gamma}} \end{pmatrix}$$
(22)

The complete projections on the L - and R - chiral bases (eq. 6) are done in appendix A2, reporting eq. 78 as eq. 23 below

$$\begin{pmatrix} \ell & | & \hat{\ell} \end{pmatrix}^{\dot{\gamma} \to L} = \begin{pmatrix} \nu & | & \mathcal{N} \\ e^{-} & | & e^{+} \end{pmatrix}^{\dot{\gamma} \to L}$$

$$\begin{pmatrix} \hat{\ell} & | & \ell \end{pmatrix}_{\alpha \to R} = \begin{pmatrix} \hat{\mathcal{N}} & | & \hat{\nu} \\ e^{-} & | & e^{+} \end{pmatrix}_{\alpha \to R}$$

$$\hat{\mathcal{N}}_{\alpha} = \varepsilon_{\alpha\gamma} \{ \mathcal{N}^{\dot{\gamma}} \}^{*}, \quad (e^{-})_{\alpha} = \varepsilon_{\alpha\gamma} \{ (e^{+})^{\dot{\gamma}} \}^{*}$$

$$\varepsilon_{\alpha\gamma} \left\{ \nu^{\dot{\gamma}} \right\}^* , \left(e^+ \right)_{\alpha} = \varepsilon_{\alpha\gamma} \left\{ \left(e^- \right)^{\dot{\gamma}} \right\}$$

and \leftrightarrow h.c.

 $\widehat{\nu}_{\alpha} =$

4ne

Two remarks shall conclude this section

1) When transfroming between L - and R - chiral bases it is by no means essential to associate upper dotted spinor indices $\dot{\gamma} \rightarrow L$ to *lower* undotted ones $\alpha \rightarrow R$ since individually indices can be raised and lowered by the symplectic invaraint matrices (eq. 21)

(24)
$$(\varepsilon = i \sigma_2, \widetilde{\varepsilon}) ; \widetilde{\varepsilon} = \varepsilon^{-1} = \varepsilon^t = -\varepsilon$$

but it is essential to keep one each of the dotted and undotted type , related by *local* hermition conjugation .

- 2) The mirror association \leftrightarrow is a feature specific to chiral bases pertaining respectively to the 16 and $\overline{16}$ representations of SO10, and constitute the (a) *minimal* neutrino mass induced extension of fermion families. In possible extended fermion representations, e.g. involving the 27 and $\overline{27}$ representations of the exceptional group E6, the number of fermions in one of the chiral bases can well be odd.
 - 3 Mass and mass from mixing

Charged fermions are not like neutrinos [1]

We shall consider - 'pour fixer les idees' - 3 fermion families in the (left-) chiral basis,

forming a substrate for the local gauge group

[1] Ettore Majorana, 'Teoria simmetrica dell elettrone e positrone ', Nuovo Cimento 14 (1937) 171.

Figure 1:

Key questions \rightarrow why 3 ? why SO10 ?

From ref. [4] PM , Venice , 22. February 2005 .

Lets call the above extension of the standard model the 'minimal nu-extended SM'.^a

(25)

$$\begin{pmatrix} \bullet \bullet \bullet \nu \mid \mathcal{N} \bullet \bullet \bullet \\ \bullet \bullet \ell \mid \hat{\ell} \bullet \bullet \bullet \end{pmatrix}^{\gamma}_{F = e, \mu, \tau}$$

$$\begin{pmatrix} \nu \quad \mathcal{N} \\ \ell \quad \hat{\ell} \end{pmatrix}^{\dot{\gamma}}_{F = e, \mu, \tau}$$

a [5] Harald Fritzsch and Peter Minkowski, "Unified interactions of leptons and hadrons", Annals
 Phys.93 (1975) 193 and Howard Georgi, "The state of the art - gauge theories", AIP Conf.Proc.23 (1975)
 575.

The right-chiral base fields are then associated to 1 for 1

(26)

$$(f^{r})_{F\alpha} = \varepsilon_{\alpha\gamma} \left[(f^{r})_{F}^{\dot{\gamma}} \right]^{*}$$

$$(\varepsilon = i \sigma_{2})_{\alpha\gamma} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

The matrix ε is the symplectic (Sp(1)) unit, as implicit in Ettore Majorana's original paper [1]. The local gauge theory is based on the gauge (sub-) group (27) $SL(2, C) \times SU3_c \times SU2_L \times U1_Y$

... why ? why 'tilt to the left' ?

3a Yukawa interactions and mass terms

The doublet(s) of scalars are related to the 'tilt to the left' .

(28)
$$\begin{pmatrix} \nu & \mathcal{N} \\ \ell & \widehat{\ell} \end{pmatrix}_{F} \leftrightarrow \begin{pmatrix} \varphi^{0} & \Phi^{+} \\ & & \\ \varphi^{-} & \Phi^{0} \end{pmatrix} = z$$

The green entries in eq. 28 denote singlets under $SU2_L$. The quantity z is associated with the quaternionic or octonionic structure inherent to the (2, 2) representation of $SU2_L \otimes SU2_R$ (beyond the electroweak gauge group) $[6]^a$. \rightarrow

^a e.g. [6] F. Gürsey and C.H. Tze, "On the role of division-, Jordan- and related algebras in particle physics", Singapore, World Scientific (1996) 461. \leftrightarrow related to the number 3.

The Yukawa couplings are of the form (notwithstanding the quaternionic or octonionic structure of scalar doublets)

(29)

$$\begin{aligned}
\mathcal{H}_{Y} &= \begin{bmatrix} (\varphi^{0})^{*}, (\varphi^{-})^{*} \\ \Phi^{0}, -\Phi^{+} \end{bmatrix} \lambda_{F'F} \times \\
\times \left\{ \varepsilon_{\dot{\gamma}\dot{\delta}} \mathcal{N}_{F'}^{\dot{\delta}} \begin{bmatrix} \nu^{\dot{\gamma}} \\ \ell^{\dot{\gamma}} \end{bmatrix}_{F} \right\} + h.c.
\end{aligned}$$

$$\mathcal{N}_{\dot{\gamma} F'} = \varepsilon_{\dot{\gamma}\dot{\delta}} \, \mathcal{N}_{F'}^{\dot{\delta}} ; \ \varepsilon_{\dot{\gamma}\dot{\delta}} = \overline{\varepsilon_{\gamma\delta}} = \varepsilon_{\gamma\delta}$$

The only allowed Yukawa couplings by $SU2_L \otimes U1_{\mathcal{Y}}$ invariance are those in eq. 29 , with arbitrary complex couplings $\lambda_{F'F} = -$

Spontaneous breaking of $SU2_L \otimes U1_{\mathcal{Y}}$ through the vacuum expected value(s)

(30)

$$\left\{ \begin{array}{l} \left(\begin{array}{cc} \varphi^{0} & \Phi^{+} \\ \varphi^{-} & \Phi^{0} \end{array} \right) (x) \mid \Omega \right\rangle = \\ \left(\begin{array}{c} \left(x \right) \right) = \left(\begin{array}{c} v_{ch} \left(v_{ch}^{u} \right) & 0 \\ 0 & v_{ch} \left(v_{ch}^{d} \right) \end{array} \right) \\ v_{ch} = \frac{1}{\sqrt{2}} \left(\sqrt{2} G_{F} \right)^{-1/2} = 174.1 \text{ GeV} \end{array} \right)$$

independent of the space-time point x^{a}

^a The implied parallelizable nature of $\langle z (x) \rangle$ is by far not trivial and relates in a wider context including $SU2_L$ – triplet scalar representations to potential (nonabelian) monopoles and dyons.

induces a neutrino mass term through the Yukawa couplings λ $_{F'}$ $_F$ in eq. 29

$$_{F'} \mathcal{N} \nu_F = \mathcal{N}_{\dot{\gamma} F'} \nu_F^{\dot{\gamma}} = \nu_{\dot{\gamma} F} \mathcal{N}_{F'}^{\dot{\gamma}}$$

 $\mu_{F'F} = v_{ch} \lambda_{F'F}$

 $\rightarrow \mathcal{H}_{\mu} = F' \mathcal{N} \mu_{F' F} \nu_{F} + h.c. = \nu^{T} \mu^{T} \mathcal{N} + h.c.$

The matrix μ defined in eq. 31 is an arbitrary complex 3×3 matrix, analogous to the similarly induced mass matrices of charged leptons and quarks. In the setting of primary SO10 breakdown, a general (not symmetric) Yukawa coupling $\lambda_{F'F}$ implies the existence in the scalar sector of at least two irreducible representations $(10) \oplus (120)^{a}$.

^a key question \rightarrow a 'drift' towards unnatural complexity ? It becomes even worse including the heavy neutrino mass terms : 256 (complex) scalars.

3b 'Mass from mixing' in vacuo or 'seesaw'

neutrinos oscillate like neutral Kaons (yes , but how ?) - Bruno Pontecorvo ^a

The special feature, pertinent to (electrically neutral) neutrinos is, that the ν - extending degrees of freedom \mathcal{N} are singlets under the whole SM gauge group $G_{SM} = SU3_c \otimes SU2_L \otimes U1_\mathcal{Y}$, in fact remain singlets under the larger gauge group $SU5 \supset G_{SM}$. This allows an arbitrary (Majorana-) mass term, involving the bilinears formed from two \mathcal{N} -s. In the present setup (minimal ν -extended SM) the full neutrino mass term is thus of the form \rightarrow

^a [7] Bruno Pontecorvo, "Mesonium and antimesonium", JETP (USSR) 33 (1957) 549, english translation Soviet Physics, JETP 6 (1958) 429. Here let me continue the 'flow of thought' embedding neutrino masses in SO10.

(32)

$$\begin{array}{l}
\mathcal{H}_{\mathcal{M}} = \frac{1}{2} \left[\nu \mathcal{N} \right] \mathcal{M} \begin{bmatrix} \nu \\ \mathcal{N} \end{bmatrix} + h.c. \\
\mathcal{M} = \begin{pmatrix} 0 & \mu^{T} \\ \mu & M \end{pmatrix} ; \quad \mathcal{M} = \mathcal{M}^{T} \to M = M^{T}
\end{array}$$

Again within primary SO10 breakdown the full \mathcal{M} extends the scalar sector to the representations $(10) \oplus (120) \oplus (126)^a$

^a It is from here where – to the best of my knowledge – the discussion of the *necessarily nonvanishing nature* and of the magnitude of the light neutrino masses (re-) started in 1974 [8], [9]. The structure in eq. 32 is reserved for the minimal $SU2_L \times U1_Y$ case 'tilted to the left' [10].

Especially the 0 entry needs explanation. It is an exclusive property of the minimal ν -extension assumed here.

Since the 'active' flavors ν_F all carry $I_{3w} = \frac{1}{2}$ terms of the form

(33)
$$\frac{1}{2} F' \nu \chi_{F'F} \nu_F = \frac{1}{2} \nu^T \chi \nu; \chi = \chi^T$$

cannot arise as Lagrangean masses, except induced by an I_w -triplet of scalars, developing a vacuum expected value independent from the doublet(s).

The relative 'size' of μ and M shall define the 'mass from mixing' situation and segregates 3 heavy neutrino flavors from the 3 light ones :

$$(34) \qquad \qquad \swarrow \qquad || \mu || \ll || M || \qquad \nearrow$$

Figure 2:

Key questions \rightarrow which is the scale of M? $O(10^{10})$ GeV \rightarrow is there any evidence for this scale today ? hardly ! \rightarrow and what about susy ?

3c Diagonalization of \mathcal{M}

We shall use the generic expansion parameter $\vartheta = || \mu || / || M || \ll 1$ – and determine a unitary 6×6 matrix U with the property [11]

 $\mathcal{M} = U \mathcal{M}_{diag} U^{T} \rightarrow \mathcal{M}_{diag} =$ $\mathcal{M}_{diag} (m_{1}, m_{2}, m_{3}; M_{1}, M_{2}, M_{3})$ $0 \leq m_{1} \leq \cdots \leq M_{3}, m_{3} \ll M_{1}$ and $U = TU_{0}; T^{-1} \mathcal{M} T^{-1} T = \mathcal{M}_{bl.diag.} \rightarrow$ $= \begin{pmatrix} \mathcal{M}_{1} & 0 \\ 0 & \mathcal{M}_{2} \end{pmatrix} = U_{0} \mathcal{M}_{diag} U_{0}^{T}$

The matrix T in eq. 35 describes the mixing of light and heavy flavors, determined from a $3~\times~3$ submatrix t .

(36)
$$\begin{pmatrix} (1 + t t^{\dagger})^{-1/2} & (1 + t t^{\dagger})^{-1/2} t \\ -t^{\dagger} (1 + t t^{\dagger})^{-1/2} & (1 + t^{\dagger} t)^{-1/2} \end{pmatrix}$$

T =

The upper left 3×3 block of T (eq. 36) $(1 + t t^{\dagger})^{-1/2}$ causes the (3×3) mixing matrix governing oscillations of light (anti)neutrino's to deviate from unitarity, i.e. it becomes subunitary, but by a tiny amount since as we will discuss below

(37)
$$||t||^{2} = \sum_{kl=1}^{3} |t_{kl}|^{2} = O((10^{-21}))$$

The matrix t in eq. 36 is reduced to diagonal form through two unitary $3~\times~3$ matrices u and w a

$$t = u (\tan a_{diag}) w^{-1}$$

$$a_{diag} = a_{diag} (a_1, a_2, a_3)$$

(38)

$$0 \leq a_k \leq \pi / 2$$

$$a_{|k|} \ll |\pi|/|2 \text{ for } \vartheta |= ||\mu||/||M|| \ll |1|$$

t is determined from the quadratic equation

(39)
$$t = \mu^T M^{-1} - t \mu \overline{t} M^{-1}$$

which can be solved recursively

^a In eq. 38 a_{diag} defines the three (real) heavy-light mixing angles $a_{1,2,3}$, which without loss of generality can be chosen in the first quadrant, but which are small for $\vartheta = ||\mu|| / ||M|| \ll 1$

setting

$$t_{n+1} = \mu^{T} M^{-1} - t_{n} \mu^{T} t_{n} M^{-1}$$

$$t_{0} = 0 , t_{1} = \mu^{T} M^{-1} ,$$
(40)

$$t_{2} = t_{1} - \mu^{T} M^{-1} \mu \mu^{\dagger} \overline{M}^{-1} M^{-1}$$
....

$$\lim_{n \to \infty} t_{n} = t$$

In order to control convergence we introduce — the specific norms *a*

(41)
$$|| \mu ||^{2} = tr \mu \mu^{\dagger} || M ||^{-2} = tr M^{-1} M^{-1}^{\dagger} \vartheta = || \mu || / || M || \ll 1$$

 $^{^{}a}~$ The sequence defined in eq. 40 is convergent for $\vartheta~<~1$.

u, w in eq. 38 contain all 9 CP violating phases, pertaining to T. The above was intended to 'explain' why the (un)observed light neutrino masses are so much smaller than charged fermion ones. key question \rightarrow does it ? wait. $t = u (\tan a_{diag}) w^{-1}$ defined in eq. (38) and its determining equation, repeated below

$$t = \mu^T M^{-1} - t \mu \overline{t} M^{-1}$$

ensure block diagonal form of $\mathcal{M}_{bl.diag.}$.

(42)
$$\mathcal{M}_{bl.diag.} = T^{-1} \mathcal{M} T^{-1} T$$
$$\mathcal{M}_{bl.diag.} = \begin{pmatrix} \mathcal{M}_{1} & 0\\ 0 & \mathcal{M}_{2} \end{pmatrix}$$

(${\cal M}_{1}\,,\,{\cal M}_{2}$) forming ${\cal M}_{\it bl.diag.}$ defined in eq. 42 become $\mathcal{M}_{1} = (1 + t t^{\dagger})^{-1/2} \times$ $\times \left[-t \mu - \mu^T t^T + t M t^T \right] \times$ $\times (1 + t t^{\dagger})^{-1/2 T}$ (43) $\mathcal{M}_2 = (1 + t^{\dagger} t)^{-1/2} \times$ $\times \left[\mu \overline{t} + t^{\dagger} \mu^{T} + M \right] \times$ $\times (1 + t^{\dagger} t)^{-1/2 T}$

Comparing \mathcal{M}_1 with $t \ \mathcal{M}_2 \ t^T$ we find

the relation a , [12]

$$\mathcal{M}_1 = -t \, \mathcal{M}_2 \, t^T$$

It follows from the assumptions detailed in footnote a , that $Det t \neq 0$ and hence the heavy-light mixing angles $a_{1,2,3} > 0$ defined in eq. 38 are strictly bigger than 0. The lowest approximation, $t \to t_1$ and and $\mathcal{M}_2 \to M$, yields the first nontrivial approximation of the light neutrino mass matrix

in 'second order mixing'

(45)
$$\mathcal{M}_1 \sim \mathcal{M}_1^{(2)} = -\mu^T M^{-1} \mu$$

^a In the scenario adopted here, we further assume $Det M \neq 0$ and $Det \mu \neq 0$. This leaves no room for light 'sterile' neutrinos, which would imply a nonminimal ν -extension of the standard model. This would be mandatory, if the results of the LSND collaboration are correct. [12] G.B. Mills for the LSND Collaboration, 'Results on neutrinos from LSND', published in *Stanford 1998, Gravity from the Hubble length to the Planck length* 467-475, see the MiniBooNE Experiment [13].

Remaining dagonalization of $\mathcal{M}_{bl.diag.}$

We go back to eq. 35 $U = T U_0$: U_0 diagonalizes the 3×3 blocks \mathcal{M}_1 , \mathcal{M}_2 ^a

$$T^{-1} \mathcal{M} T^{-1} T = \mathcal{M}_{bl.diag.} ; \mathcal{M}_{bl.diag.} = \begin{pmatrix} \mathcal{M}_1 & 0 \\ 0 & \mathcal{M}_2 \end{pmatrix}$$

$$U_{0} = \begin{pmatrix} u_{0} & 0 \\ 0 & v_{0} \end{pmatrix} \sim U_{0} I ; I = I_{diag} (\pm 1, \dots, \pm 1)$$

$$\mathcal{M}_{1} = u_{0} m_{diag} (m_{1}, m_{2}, m_{3}) u_{0}^{T}$$

$$\mathcal{M}_{2} = v_{0} M_{diag} (M_{1}, M_{2}, M_{3}) v_{0}^{T}$$
; $\mathcal{M}_{1} = -t \mathcal{M}_{2} t^{T}$
(46)

^a U_0 is determined modulo diagonal (orthogonal , 6×6) matrices $I = I_{diag}$ as shown in eq. 46, representing the discrete abelian group $(Z_2)^{\otimes 6}$.

T is constructed as a sequence (eq. 40) , convergent for $\vartheta = || \, \mu \, || \, / \, || \, M \, || \, < \, 1$, as shown above , and thus unique. As a consequence of eqs. 44 , 46 – t beeing determined (within T) – \mathcal{M}_1 and \mathcal{M}_2 and hence also u_0 and v_0 are not independent of each other. We shall keep as independent variables \mathcal{M}_1 and t (or equivalently T).

4 Generic mixing and mass estimates

Here we introduce the arithmetic mean measure for 3×3 matrices A , not to be confused with the norms || . || defined in eq. 41

(47)
$$|A| = |Det A|^{1/3}$$

Eq. 44 then implies

2me

(48)
$$|\mathcal{M}_{1}| / |\mathcal{M}_{2}| = |t|^{2}$$
$$|\mathcal{M}_{1}| = |m_{diag}| = (m_{1}m_{2}m_{3})^{1/3}$$
$$|\mathcal{M}_{2}| = |M_{diag}| = (M_{1}M_{2}M_{3})^{1/3}$$

We consider the arithmetic mean of the light and heavy neutrino masses and the coorresponding 'would be' masses if μ and μ^T would be the only parts of the full $6~\times~6$ mass matrix ${\cal M}$

$$\overline{m} = (m_1 m_2 m_3)^{-1/3}$$

$$\overline{M} = (M_1 M_2 M_3)^{-1/3}$$

$$\mu = u_{\mu} \mu_{diag} (\mu_1, \mu_2, \mu_3) v_{\mu}^{-1}$$

$$\overline{\mu} = (\mu_1, \mu_2, \mu_3)^{-1/3}$$

(49)

3me

Then beyond eq. 48 there is one more (exact) relation ^a $\hat{t} = (\tan a_1 \tan a_2 \tan a_3)^{1/3} = |t|$ $|\mu|^2 = |\mathcal{M}_1||\mathcal{M}_2| \rightarrow$ $\overline{m} / \overline{\mu} = \widehat{t}$, $\overline{m} / \overline{M} = \widehat{t}^2$ (50)or equivalently $\overline{m} = \widehat{t} \overline{\mu} \quad \swarrow \quad \overline{M} = \widehat{t}^{-1} \overline{\mu}$

seesaw (of type I)

^a for MSSM inspired seesaw of type II realizations see e.g. [14] .

The estimates below are based on the assumption that the scalar doublets (2) are part of a complex 10-representation of SO10 with Yukawa couplings of the form

(51)
$$\mathcal{H}_{Y} = \lambda_{F'F} \begin{pmatrix} 16 & 16 & 10 \\ B & A & D \end{pmatrix}_{F'fBfAF} + h.c.$$

$$\rightarrow \lambda_{F'F} = \lambda_{FF'}$$

It follows that at the unification scale we have ^a

^a In order to obtain a general (not a symmetric) heavy-light mass matrix μ a combination of SO10 representations $(120) \oplus (10)$ is needed, which however would 'destroy' the mass relation in eq. 51 . key question \rightarrow is this relevant ? estimate shall be estimate .

(52)
$$\mu = \mu^T = \mu_u$$

We shall use the relation at a scale near 100 GeV

$$\mu \sim \frac{1}{3} \left(\mu_u \right)$$

 $\overline{\mu} \sim rac{1}{3}\,{
m GeV}$

The factor $\frac{1}{3}$ accounts for the color rescaling reducing the (colored) up-quark mass matrix from the unification scale down to 100 GeV . It follows using the definitions in eq. 49 and the quark masses $m_{\,u}\,\sim\,5.25$ MeV , $m_{\,c}\,\sim\,1.25$ GeV and $m_{\,t}\,\sim\,180$ GeV

$$\overline{\mu}_{u} = (m_{u} m_{c} m_{t})^{1/3} \sim 1 \, \text{GeV} \rightarrow$$

(54)

6me

Further lets approximate the mass square differences obtained from the combined neutrino oscillation measurements by

(55)
$$\Delta m_{12}^2 \sim 10^{-4} \text{ eV}^2 \\ \Delta m_{23}^2 \sim 2.5 \ 10^{-2} \text{ eV}$$

Finally 'pour fixer les idées' I set the lowest light neutrino mass $\sim~1~{\rm meV}$ and assume hierarchical (123) light masses. This implies

2

 $m_1 \sim 1 \text{ meV}, m_2 \sim 10 \text{ meV}$

(56)

 $m_{\ 3}\ \sim\ 50\ {
m meV}\
ightarrow\ \overline{m}\ \sim\ 8\ {
m meV}$

7me

It follows from eq. 50

(57) $\widehat{t} = \overline{m} / \overline{\mu} \sim 2.4 \, 10^{-11}$ $\overline{M} = \overline{\mu} / \widehat{t} \sim 1.4 \, 10^{10} \, \text{GeV}$ $\widehat{t}^2 \sim 5.8 \, 10^{-22}$

Light neutrino masses are indeed small. ^a

5 Why is the large mass - scale so large ? – tentative thoughts

^a puzzling questions \rightarrow is susy bringing down in 'small steps' the B-L protecting mass scale $\overline{M} = \sim 1.4 \cdot 10^{-7}$ TeV to 1 TeV ? – Or is $\overline{M} = \sim 1.4 \cdot 10^{-7}$ TeV in view of seesaw type II too small ? $\mu \rightarrow e \gamma$ at a rate of ?

tentative thoughts

1) Exact symmetries are all (?) linked to unbroken gauge fields . The most difficult such form the substrate of *gravity*, with base quanta of spin 2, which yet expose a characteristic high (mass-) scale

(58) $m_{Pl} = (G_N)^{-1/2} (\hbar, c)^{1/2} \sim 1.22 \cdot 10^{19} \text{ GeV} / c^2$

Next in line of unbroken gauge fields are charge-like gauge bosons base quanta of spin 1 with gauge group

(59) $G_3 = SU3_c \times U1_{e.m.}$

The substrate of fermions , carrying the charges of G_3 contains the three families , with neutrino flavors *omitted* \rightarrow

in the left - chiral basis (eq. 1) for one family

(60) $\begin{pmatrix} u^{1} & u^{2} & u^{3} & \nu & | \mathcal{N} & \widehat{u}^{3} & \widehat{u}^{2} & \widehat{u}^{1} \\ d^{1} & d^{2} & d^{3} & e^{-} & | e^{+} & \widehat{d}^{3} & \widehat{d}^{2} & \widehat{d}^{1} \end{pmatrix}^{\dot{\gamma} \to L}$ $= (f)^{\dot{\gamma}}$

The scales of fermion masses, while *parameters* within the conserved gauge interactions of G_3 arise exclusively through spontaneous breaking of the SM interactions with gauge group $G_{SM} = SU_3_c \times SU_2_L \times U_1_\mathcal{Y}$ (61) $(Q_{e.m.} / e = I_3_w + \mathcal{Y} ; I_3_w = I_3_L)_f$

through Yukawa couplings to one (2) doublets of scalars as defined in eq.28

(62)
$$\begin{pmatrix} \nu & \mathcal{N} \\ & & \\ \ell & \hat{\ell} \end{pmatrix}_{F} \leftrightarrow \begin{pmatrix} \varphi^{0} & \Phi^{+} \\ & & \\ \varphi^{-} & \Phi^{0} \end{pmatrix} = z$$

in straightforward generalizations of eq. 29

(63)

$$\begin{aligned}
\mathcal{H}_{Y} &= \begin{bmatrix} (\varphi^{0})^{*}, (\varphi^{-})^{*} \\ \Phi^{0}, -\Phi^{+} \end{bmatrix} \lambda_{F'F} \times \\
\times \left\{ \varepsilon_{\dot{\gamma}\dot{\delta}} \mathcal{N}_{F'}^{\dot{\delta}} \begin{bmatrix} \nu^{\dot{\gamma}} \\ \ell^{\dot{\gamma}} \end{bmatrix}_{F} \right\} + h.c.
\end{aligned}$$

This way a *plethora* of base fermion masses is generated ^a

$$m_{u} * = 5.25 \text{ MeV} \qquad m_{c} m_{c} \sim 1.3 \text{ GeV} \qquad m_{t} \sim 170 \text{ GeV}$$
(64)
$$m_{d} * = 8.75 \text{ MeV} \qquad m_{s} * = 175 \text{ MeV} \qquad m_{b} m_{b} \sim 4.2 \text{ GeV}$$

$$m_{e} = 0.511 \text{ MeV} \qquad m_{\mu} = 105.7 \text{ MeV} \qquad m_{\tau} = 1.777 \text{ GeV}$$

The mass values in eq. 64 represent a downfeed from the broken gauge sector of the SM into parameter space of the $SU_3_c \times U_{1e.m.}$ unbroken gauge sector . While the so induced mass scales overlap with the electroweak (breaking) scale(s), the central scale of strong interactions (QCD) is not generated the same way: it can be represented by the nucleon mass in the limit $m_{u,d} \rightarrow 0$ or the inverse slope of Regge trajectories

(65)
$$M_{\,N} \left(\,m_{\,u,d}\,
ightarrow\,0\,
ight) \,\sim\,0.9\,$$
GeV $\,;\,\,1\,/\,lpha^{\,\prime}\,\sim\,1.02\,$ GeV

^a For the quark masses in the $\overline{\rm MS}$ scheme – say – a reference scale μ must be specified : * stands here for $\mu ~\sim 1$ GeV [15], [16].

4tt

2) Hence we are led to include – through the intertwined nature of scales – as next step G_{SM} alongside G_3 , where a typical scale characterizing electroweak gauge breaking can be taken as

(66)
$$v_{ch} = \frac{1}{\sqrt{2}} \left(\sqrt{2} G_F \right)^{-1/2} = 174.1 \text{ GeV}$$

We face the appearance of 3 spin 1/2 fermion families , 90 (96) degrees of freedom excluding (including) heavy neutrino flavors . In this connection the nature of global , ungauged charge-like symmetries : exactly \leftrightarrow approximately conserved B, L_F , $L = \sum_F L_F$, B - L

becomes an urgent question .

Individual B and L_F conservations are broken by anomalies in the SM , whereas B - L without minimal neutrino mass extension to \mathcal{N}_F flavors – B - L(15) is broken by a graviational anomaly

$$d^{4} x \sqrt{|g|} D^{\mu} j_{\mu}^{B-L(15)} = 3 \widehat{A}_{1} (X)$$
$$\widehat{A}_{1} (X) = -\frac{1}{24} tr X^{2}$$
$$(X)^{a}_{b} = \frac{1}{2\pi} \frac{1}{2} d x^{\mu} \wedge d x^{\nu} (R^{a}_{b})_{\mu\nu}$$

(67)

Riemann curvature tensor

 $\left(\begin{array}{cc} R & a \\ & b \end{array}
ight)_{\mu \ \nu}$: mixed components : $\begin{array}{cc} a & b \\ & b \end{array} \rightarrow$ tangent space $\mu \ \nu \end{array} \rightarrow$ covariant space

$$D^{\mu} j_{\mu}^{B-L(16)} = 0$$

n eq. 67 $\widehat{A} (X \to \lambda) = \frac{1}{2} \lambda / \sinh(\frac{1}{2} \lambda)$

denotes the Atiyah - Hirzebruch character or \widehat{A} - genus [17] with its integral over a compact , euclidean signatured closed manifold M_4 , capable of carrying on SO4 - spin structure , becomes the index of the associated *elliptic* Dirac equation

(68)
$$\int \widehat{A}(X_E) = n_R - n_L = \text{integer}$$

In eq. 68 $n_{R,L}$ denote the numbers of right - and left - chiral solutions of the Dirac equation on M_4 . The index $_E \rightarrow X_E$ shall indicate the euclidean transposed curvature 2 - form , opposite to physical uncurved space time [18] . For the latter case the first relation in eq. 67 yields the integrated form – in the limit of infinitely heavy \mathcal{N}_F – \rightarrow

$$\Delta_{R-L} n_{\nu} = \int d^{4} x \sqrt{|g|} D^{\mu} j_{\mu}^{B-L(15)} = \mathbf{3} \Delta n (\widehat{A})$$

3 = number of families = odd ; $m_{\nu_F} \rightarrow 0$ (69)

In eq. 69 $\Delta_{R-L} n_{\nu}$ denotes the difference of right - chiral ($\hat{\nu}$) and left - chiral (ν) flavors between times $t \rightarrow \pm \infty$. Here a subtlety arises *precisely* because the number of families on the level of G_{SM} is odd, and the light neutrino flavors are not 'Dirac - doubled', which according to eq. 69 could potentially lead to a change in fermion number beeing odd, which violates the rotation by 2π symmetry, equivalent to $\hat{\Theta}^2$, unless (70) $\Delta n(\hat{A}) = \text{even} (\sqrt{\text{ for } dim} = 4 \mod 8)$ This leads to the following collection of questions *undecidable* (or *unanswerable*) within the SM and with this on the level of scales characteristic of electroweak gauge breaking

questions	potential answers
	at unknown scale
3 colors ?	octonion structure
3 families ?	\rightarrow exceptional groups
quantized elementary electric charges ?	1 replica- product ofcharge-like simple gauge group(s)
origin of the 'tilt to the left' ?	no anwer but : what means left ?
B , B - L violation driven by $~\overline{M}~\sim~10~^{10}$ GeV ?	large scale protects at low scale
spins other than $0\ ,\ rac{1}{2}\ ,\ 1\ ,\ 2$	supersymmetry, supergravity
d=1+3 dimensions and gravity ?	target space ↔ base space

Apparent paradox of unification of forces and stability of large , primary breakdown scales of order $~\overline{M}~\sim~10^{~10}~{
m GeV}~-m_{~Pl}~\sim~10^{~19}~{
m GeV}$

In a concluding remark (not a conclusion) let me point out that the example of the large scale inherent in heavy neutrino masses is not only responsible for the small masses of observed neutrino favors , but at the same time the stability of $\overline{M} \sim 10^{-10}$ GeV – a key feature unexplained so far – serves as protecting scale for the approximative conservation of leptonic (as well as baryonic) numbers at electroweak scales much below \overline{M} . As a consequence even a unified charge-like gauge group SO10, $E6 \cdots$ acts first through a primary breakdown of local gauge invariance at scales $M_{unif} \sim 10^{-16}$ GeV , which produces essential deviations from unified symmetries .

asymmetry is the sister of symmetry

A1 Appendix 1 $\left(\,\widehat{C}\,,\,\widehat{P}\,,\,\widehat{T}\,
ight)$

Combining eqs. 12 and 14 it follows , for $\widehat{C}\,,\ \widehat{P}$

$$\left(\left\{f^{(C)}\right\}^{(P)}\right) = \left(-iCf^{*}(Px)\right) = \left(i\gamma_{0}f^{(C)}(Px)\right) = \left(\left\{\leftrightarrow f\right\}^{(P)}\right)(\sqrt{Px})$$
$$\widehat{C}\widehat{P} \sim \widehat{P}\widehat{C}; \ \widehat{P}^{2} \sim -\P$$

(71)

The symbol \sim in eq. 71 shall indicate that the operators are restricted to their action on the fermion families $(f)_{\diamondsuit A}$ and their (re)projectable chiral L and R bases . For \hat{C} , \hat{T} we have

(72)

$$\begin{pmatrix} \left\{ f^{(C)} \right\}^{(T)} \right) = (C \gamma_0 C \gamma_5 f^* (Tx)) = (C \gamma_5 C \gamma_0 f^* (Tx)) \\
= \left(\left\{ \leftrightarrow f \right\}^{(T)} \right) \\
\widehat{C} \widehat{T} \sim \widehat{T} \widehat{C} ; \widehat{T}^2 \sim - \P$$

We note without explicit proof

(73)
$$\widehat{T} \, \widehat{P} \, \sim \, - \, \widehat{P} \, \widehat{T}$$

1A1

We repeat eq. 17 as eq. 74 below

(74)

$$\widehat{\Theta}^{-1} \left(f^{\dot{\gamma}}(x) \right) \widehat{\Theta} = \left(i \left\{ f^{\dot{\gamma}} \right\}^* (-x) \right)$$

$$\widehat{\Theta}^{-1} \left(f_{\alpha}(x) \right) \widehat{\Theta} = \left(-i \left\{ f_{\alpha} \right\}^* (-x) \right)$$

$$f_{\alpha}(y) = \varepsilon_{\alpha\gamma} \left\{ f^{\dot{\gamma}} \right\}^* (y)$$

From the last relation in eq. 74 we obtain

$$\begin{split} \widehat{\Theta}^{-1} f_{\alpha} (y) \widehat{\Theta} &= \varepsilon_{\alpha \gamma} \left\{ \widehat{\Theta}^{-1} f^{\dot{\gamma}} \widehat{\Theta} \right\}^{*} (y) = -i \varepsilon_{\alpha \gamma} f^{\dot{\gamma}} (-y) \\ &= (-i) \left\{ \varepsilon_{\alpha \gamma} (f^{\dot{\gamma}})^{*} (-y) \right\}^{*} \\ &= (-i) \left\{ f_{\alpha} \right\}^{*} (-y) (\sqrt{)} \\ &\widehat{\Theta}^{2} \sim - \P \end{split}$$

(75)

A2 Appendix 2 : chiral projection onto chiral bases $\dot{\gamma} \rightarrow L$ and $\alpha \rightarrow R$ We report from eq. 6 $\begin{pmatrix} u^{1} & u^{2} & u^{3} & \nu & | & \mathcal{N} & \widehat{u}^{3} & \widehat{u}^{2} & \widehat{u}^{1} \\ d^{1} & d^{2} & d^{3} & e^{-} & | & e^{+} & \widehat{d}^{3} & \widehat{d}^{2} & \widehat{d}^{1} \end{pmatrix}^{\dot{\gamma}} \rightarrow L$ $\begin{pmatrix} (u^{1} & u^{2} & u^{3} & \nu & | & e^{+} & \widehat{d}^{3} & \widehat{d}^{2} & \widehat{d}^{1} \end{pmatrix}^{\dot{\gamma}} \rightarrow L$

(76)
$$= \begin{pmatrix} f^{1} & f^{2} & f^{3} & f^{4} & | & f^{9} & f^{10} & f^{11} & f^{12} \\ f^{5} & f^{6} & f^{7} & f^{8} & | & f^{13} & f^{14} & f^{15} & f^{16} \end{pmatrix}^{\dot{\gamma} \to L}$$

$$\left(\begin{array}{ccc} f^{4} & | & f^{9} \\ \\ f^{8} & | & f^{13} \end{array} \right)^{\dot{\gamma} \to L} \qquad \qquad \dot{\gamma} \to L \\ \qquad = \left(\begin{array}{ccc} \ell & | & \hat{\ell} \end{array} \right) \qquad \longrightarrow$$

$$\dot{\gamma} \to L \iff \alpha \to R : (f^r)_{\alpha} = \varepsilon_{\alpha \gamma} \left\{ (f^r)^{\dot{\gamma}} \right\}^*; r = 1, \cdots, 16$$

$$(\Leftrightarrow f)_{\alpha} =$$

(77)
$$= \begin{pmatrix} f^{12} & f^{11} & f^{10} & f^{9} & | & f^{4} & f^{3} & f^{2} & f^{1} \\ f^{16} & f^{15} & f^{14} & f^{13} & | & f^{8} & f^{7} & f^{6} & f^{5} \end{pmatrix}_{\alpha \to R}$$

$$= \begin{pmatrix} u^{1} & u^{2} & u^{3} & \widehat{\mathcal{N}} & | & \widehat{\nu} & \widehat{u}^{3} & \widehat{u}^{2} & \widehat{u}^{1} \\ d^{1} & d^{2} & d^{3} & e^{-} & | & e^{+} & \widehat{d}^{3} & \widehat{d}^{2} & \widehat{d}^{1} \end{pmatrix}_{\alpha \to R}$$

$$\begin{pmatrix} f^{9} & | & f^{4} \\ \\ f^{13} & | & f^{8} \end{pmatrix}_{\alpha \to R} = \begin{pmatrix} \widehat{\ell} & | & \ell \end{pmatrix}_{\alpha \to R} \to$$

Collecting both chiral projections on (anti-)lepton flavors in eqs. 76 and 77 we obtain

(78)

$$\begin{aligned}
\dot{\gamma} \to L \\
\left(\begin{array}{ccc}
\nu & | & \mathcal{N} \\
e^{-} & | & e^{+} \end{array} \right)^{\dot{\gamma} \to L} \\
e^{-} & | & e^{+} \end{aligned}
\end{aligned}$$

$$\begin{pmatrix}
\hat{\ell} & | & \ell \\
& \alpha \to R
\end{aligned}
=
\begin{pmatrix}
\mathcal{N} & | & \hat{\nu} \\
& e^{-} & | & e^{+} \end{pmatrix}_{\alpha \to R}$$

 $\widehat{\mathcal{N}}_{\alpha} = \varepsilon_{\alpha\gamma} \left\{ \mathcal{N}^{\dot{\gamma}} \right\}^{*} , \quad \left(e^{-} \right)_{\alpha} = \varepsilon_{\alpha\gamma} \left\{ \left(e^{+} \right)^{\dot{\gamma}} \right\}^{*} \\ \widehat{\nu}_{\alpha} = \varepsilon_{\alpha\gamma} \left\{ \nu^{\dot{\gamma}} \right\}^{*} , \quad \left(e^{+} \right)_{\alpha} = \varepsilon_{\alpha\gamma} \left\{ \left(e^{-} \right)^{\dot{\gamma}} \right\}^{*}$

and \leftrightarrow h.c.

- [1'] G. Lüders , Det. Kong. Danske Videnskab. Selskab, Mat-fys. Medd. 28 , No. 5 (1954) ,
 W. Pauli in 'Niels Bohr and the Development of Physics'' , Mc Graw-Hill , New York , 1955 , pp. 30-51 .
- [2] R. Jost, 'Eine Bemerkung zum CTP-Theorem', Helv. Phys. Acta 30 (1957) 409, 'Sur le théorème CTP', Les problèmes mathématiques et la théorie des champs', CNRS Paris 1959, 105, 'CTP-Invarianz der Streumatrix und interpolierende Felder', Helv. Phys. Acta 36 (1963) 572, 'The general theory of quantized fields", Amer. Math. Soc., Providence, R. I., 1965. →

- [3] O. W. Greenberg, 'Why is CPT fundamental ?', Found.Phys. 36 (2006) 1535, hep-ph/0309309.
- [1] Ettore Majorana, 'Su una teroia simmetrica dell' elettrone e del positrone', Nuovo Cimento 14 (1937) 171.
- [4] P. Minkowski, 'Neutrino oscillations, a historical overview', Contributed to 11th International Workshop on Neutrino Telescopes, Venice, Italy, 22-25 Feb 2005, published in *Venice 2005, Neutrino telescopes* 7-27, hep-ph/0505049, extended version in vencice30.pdf. →

- [5] H. Fritzsch and P. Minkowski, 'Unified interactions of leptons and hadrons', Annals Phys.93 (1975) 193 and H. Georgi, 'The state of the art - gauge theories', AIP Conf.Proc.23 (1975) 575.
- [6] F. Gürsey and C.H. Tze , 'On the role of division- , Jordan- and related algebras in particle physics' , Singapore, World Scientific (1996) 461.
- [7] B. Pontecorvo, 'Mesonium and antimesonium', JETP (USSR)
 33 (1957) 549, english translation Soviet Physics, JETP 6
 (1958) 429.

- [8] H. Fritzsch, M. Gell-Mann and P. Minkowski, 'Vector like weak currents and new elementary fermions', Phys.Lett.B59 (1975) 256.
- [9] H. Fritzsch and P. Minkowski, 'Vector like weak currents, massive neutrinos, and neutrino beam oscillations', Phys.Lett.B62 (1976) 72.
- [10] P. Minkowski , ' $\mu \rightarrow e\gamma$ at a rate of one out of 1-billion muon decays ?' , Phys.Lett.B67 (1977) 421 .
- [11] C. Heusch and P. Minkowski , 'Lepton flavor violation induced by heavy Majorana neutrinos' , Nucl.Phys.B416 (1994) 3 . \rightarrow

- [12] G.B. Mills for the LSND Collaboration, 'Results on neutrinos from LSND', published in *Stanford 1998, Gravity from the Hubble length to the Planck length* 467-475.
- [13] A.A. Aguilar-Arevalo et al., the MiniBooNE Collaboration , 'A search for electron neutrino appearance at the $\Delta m^2 \sim 1 \text{ eV}^2 \text{ scale'}$, FERMILAB-PUB-07-085-E, LA-UR-07-2246, April 2007. 6pp., Phys.Rev.Lett.98 (2007) 231801 , arXiv:0704.1500 [hep-ex].

[14] H.S. Goh, R.N. Mohapatra, and S. Nasri, 'SO(10) symmetry breaking and type II seesaw', Phys.Rev.D70 (2004) 075022, hep-ph/0408139.

S. Antusch and S. F. King , 'Leptogenesis in unified theories with type II see-saw' , JHEP 0601 (2006) 117 , hep-ph/0507333 .

 [15] J. Gasser and H. Leutwyler, 'Quark masses', Phys.Rept.87 (1982) 77,
 D. Minkewski, notes

P. Minkowski , notes .

[16] J. H. Kühn, M. Steinhauser and C. Sturm, 'Precise charm and bottom quark masses', arXiv:0705.2335 [hep-ph]. →

- [17] F. Hirzebruch, 'Topological methods in algebraic geometry' in 'Die Grundlehren der mathematischen Wissenschaften" Band 131, Springer Verlag, Berlin 1966.
- [18] P. Minkowski, 'On amplified and tiny signatures of neutrino oscillations', NO-VE International Workshop on Neutrino Oscillations, Venice, Italy 24.-26. July 2001, published in 'Venice 2001, Neutrino Oscillations'', p. 291.

There is an error in the definition of the \widehat{A} genus in ref. [18] , which is corrected in eq. 67 here .