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1 Minimal v-extension of fermion families — left - and right chiral bases

ul u? U ‘ N 32 7l v — L
dt d°? e ‘ e T &\2 C/Z\l
(1) — (f ) E left chiral « =12

(f)a = can {(f)*}* = rightchiral < -1,

! v N w? ul

dl 2 et | e~ d? dl

usu

a— R

Landfamily 1 —- 2 — 3.
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In eg. 1 * denotes the operation of hermitian conjugation in field
variable space f ( x ), whereas ¢ .~ denotes the symplectic or
Lorentz-invariant 2 X 2 matrix

| 0 1
(2) 604’72(0-2)owy<_1 O)

If the spinor indices are suppressed , the two bases shall be
denoted by L , R as indicated ineqg. 1.

The symbols — represent a mirror between the left and right sides
of components . This allows the mirror operation , which we
exemplify acting on the right chiral basis ( eq. 1) denoted 4—> —

.
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f la Dirac like pairing of («p f ) , and ( f) i

To be definite we can also label the components in the left chiral
and right chiral bases in egs. 1 and 3 with numbers (1-16) as shown
in eq. 6 below .

Using the so defined ’flavor’ components " = 1,---,16

the mirror operation corresponds to the involution in ’flavor’
number

1 2 3 4 5 6 7 &8 9 10 11 12 13 14 15 16

1211 10 9 16 15 14 13 4 3 2 1 8 7 6 5

(T) — s = s(r)

This corresponds to

) (b= T wan s =s(r)

(4)
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ul u ” N 72 gl N7~ L
A A A A A A
<f5 f6 f7 f8 ‘ f13 f14 f15 f16>

;y_>L<_>Oé—>R:(fr)a:5a’y {(fr)’}/}*’,rzljjlfi
(b f)a =
f12 fll fl() f9 | f4 f3 f2 fl
(6): (fm A A A A >OHR

L —
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ul w? N | v u? aul
- (dl d? e” | et 42 d? ><HR
(7) v
ul w? ” N 0?2 gt \7 7k
<d1 d > e~ | et d? C/Z\1>
= (f)7 7"

Merging the spinor components according to eq. 7 generates Dirac
doubling {a_>RL+J 7_>L}e<>A; A =1,---.4 —

.
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Dhe so doubled full 16-multiplet has to be treated with special
attention for the neutrino-antineutrino fields , which in the
$OA — L& R-basis|denoteby (n, 1) 44

u ! n |
d! e~ | e™ d?

(8) Na R Da
n<>A T V'.Y ) n<>A T ny

./\A/'azem{./\/';y}* : ﬁazsm{VV}*
The heavy neutrino states ( not stable ones ) are mainly absorbed
Land created by the fields N , N .

3)
<)
"
<>
N
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The reversed assignments of N/ N relativeto v < 7in

eqgs. 1 - 8 is just a matter of convention , but better suited once one
of the chiral bases is selected .

Lets also associate 16 base fields to the doubled basis ( f ) 4

(ul n | n ﬂ1>
(9) dl e ‘ et C/Z\l GA

= ([ ) oa

with the numbering of components ( /") , 4 asinegs. 4-6. —

.
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Then charge conjugation (as an operation , not a symmetry) relates

(¢ f)oac ([)oa
(CY0) oacn L (P ) on ) = (F7)oa

(10)
ro=1---,16
In eq. 10/ we have reported the irreducible Lorentzian structure inherent in both chiral bases ( L, R ).
This is equivalenttothe d = 1 + 3 chiral representation of the p Matrices in the associated
> A basis
0 o oy, = (oo, 07)
Yy = ; ; 00 = 9, 01,2,3 : Pauli matrices
q 0 £ 0
1 _ _ . O = — 1
Y5R = 70717273 = = —7Y5L; = = 37072
0 —9 0 —e¢

Yu =N YY ;s Ny = diag (1, =1, —1, —1) : uncurved space-time metric

(11) N
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Dropping for a moment the spinor indices {») A, - - - we associate
with the involutory operation defined in eq. 10 a unitary

transformation , denoted C', C'? = 9 — charge conjugation

CyC=0Crofr} =19
1y CUFTC=Crof = (fO)=(4f)

({r}™) = (b (b = (1)
On the 'side’ it follows from eq. 12
(13) (Cyo)? =9

.
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b C,P, T -©=CPT
We continue with the discrete unitary transformation P associated

with parity and the antiunitary one I’ corresponding to time
reversal , neither of which is a symmetry .

Beginning with parity we associate to it the transformation ,

component by component ( fr ) SA in the > A basis , suppressing
the spinor index (as ineq. 12)

Pl (f(2)) P = (ivof(Pr)) = (1D (x))

TV (f(2)) T = (Cosf(Tw)) = (1T (2))
’}/5 — —|— ’}/5 R+ to be definite
(wo,f) ;Px:(xo,—:f) ;T:E:(—aso,f)

€T =
L(14) —
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consistency of the P | T operators as defined in eq. 14 . We do this
in appendix 1 , from where we report ( from egs. 71 -73)

C2~9q, P2~ -9, T? ~ -9
CP~PC,CT~TC,PT ~—-TP

he mirror relation in eq. IS algebraic , so we must check the

AN

(15)

Next we turn to the antiunitary symmetry © = C P T

Ol (f(x))6 = (070 (%)*700751”(—:6))
= (95 f"(—2))

AN AN AN AN AN AN

(16)

B -
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We project back the action of (:) [1°] [2] to the left and right chiral
bases respectively (eq. 7)), which is equivalent to replacing

Y5 = Y5 R ineq. 16 by - 1 for the left chiral - and by + 1 for the
right chiral components

/\ AN

()86 = (i {7} ()
A7) O (fu(2))O = (—i{fa}  (—2))
fa(y)zgm{fﬁ}*(y)

The 3 relations in eq. 17 are not independent and checked for
consistency in appendix 1, from where we also recover the relation

(18) 02 ~ — ¢ - (—-1) #J = fermion number parity

B >
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A few remarks as to O [3] are given here :

1) © combines two intertwined operations

. . /
f7(z) — {f7 } * (x)=97 (z) ; g7 f~ + Lorentz (pseudo)scalar
(19)
r — —x = PT x : space-timeinversion

2) Space-time inversion is not a local transformation , and only unambiguously defined in uncurved

space-time .
3) Hence 2) implies that upon inclusion of gravity the proof that © is an (antunitary) symmetry cannot be

inferred from locality and Lorentz invariance pertinent to uncurved space-time .
4) A subtle question arises : is there in the general case an extension of ©® which continues to be

an antihermitian genuine symmetry ?

.
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We go backwards along the developed bases , starting with
OA(egs.8and9)

ul u? n | n u? ul
dt d? e” | et 42 dl ) oa

(20) = ([ ) oa

2 Projecting out leptons and antileptons
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Dhe mirror reflection defined in eq. 6 is naturally projected on the
lepton fields , as defined in eq. 20 , where we have introduced the
shorthand as displayed in eq. 22 below , wherein we extend charge
conjugation to the chiral components of charged leptons e +

() =car {(e7)7}
( >a=sm{<e+> b
21 ()T = 8% {(e7),}
(em)7 = &% {(e*),}

O — Ty —
£V = E7 = Cay = €45

e Y

2.

€
Qo

in matrix form, ¢ =transposed | £ = 8_1 = Et = — €& —>



|
R
D

3ne

(Cv0) oaon 1loB}™
and L Z
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Dhe complete projections on the L - and R - chiral bases ( eq. 6) are
done in appendix A2 , reporting eq. 78 as eq. 23 below

(-

e” | et
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Two remarks shall conclude this section

1) When transfroming between L - and R - chiral bases it is by no means essential to associate

upper dotted spinor indices ¥ = L {0 lower undotted ones o — R since individually indices can be

raised and lowered by the symplectic invaraint matrices ( eq. 21))

= = —1

(24) (e =i02,€) ; € =c¢ =&t = —=¢

but it is essential to keep one each of the dotted and undotted type , related by local hermition
conjugation .

2) The mirror association <—|—> is a feature specific to chiral bases pertaining respectively to the
16 and 16 representations of SO10 , and constitute the (a) minimal neutrino mass induced extension
of fermion families . In possible extended fermion representations, e.g. involving the
27 and 27 representations of the exceptional group E6 , the number of fermions in one

of the chiral bases can well be odd .

3 Mass and mass from mixing
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Charged fermions are not like neufrinos [ 1]

We shall consider - 'pour fixer les idees’ - 3 fermion families in the (left-) chiral basis,

forming a substrate for the local pauge group

SL 2.0 . x  SOI10
9
ul 112 113 v | N 1211 ];12 iu:}
at 4% g° Pl gt g% d®
F
O 0
fy ¥Y=1,2
F F=e,u,1 —> Fig. 1

[1] Ettore Majorana, ' Teoria simmetrica dell elettrone e positrons ' , Nuovo Cimento 14 (1937) 171,

Figure 1.

Key questions — why 3 ? why SO10 ?
From ref. [4] PM , Venice , 22. February 2005 .
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Lets call the above extension of the standard model the 'minimal
nu-extended SM’ . 2

e e ¢ v | N o o o ¥
e o o [ | Z o o o Fee. .
(25) |
v N\
¢ ¢ F=e,u,t

o

a [ 5] Harald Fritzsch and Peter Minkowski, ”Unified interactions of leptons and hadrons”, Annals

Phys.93 (1975) 193 and Howard Georgi, ”The state of the art - gauge theories”, AIP Conf.Proc.23 (1975)
575.
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Dhe right-chiral base fields are then associatedto 1 for 1l
’.Y B
S r
(F ) pa=ca [(FT)]]

(26) 0 1

(€:i02) =
- 10

The matrix ¢ is the symplectic (Sp (1)) unit, as implicit in Ettore
Majorana’s original paper |1] .
The local gauge theory is based on the gauge (sub-) group

(27) SL(2,C) x SU3. x SU2 x Uly

... why ? why ’tilt to the left’ ?
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3a Yukawa interactions and mass terms

The doublet(s) of scalars are related to the ’tilt to the left’ .

v N p? T
(28) N — = z
AN d o~ oY

The green entries in eq. 28 denote singlets under SU2 j, .

The quantity z is associated with the quaternionic or octonionic
structure inherent to the ( 2, 2 ) representation of
SU2 1, ® SU2 g (beyond the electroweak gauge group) [ 6 |?. —

e.g. [ 6 ] F. Gursey and C.H. Tze , ”On the role of division-, Jordan- and related algebras in particle

physics”, Singapore, World Scientific (1996) 461. <« related to the number 3.
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The Yukawa couplings are of the form ( notwithstanding the
quaternionic or octonionic structure of scalar doublets)

(), (o) ]

HY: (I)Oj_q)‘i‘ )\F/FX

([ ]

(29) X 6.5./\/5, » + h.c

’y .
/e

\ _ 1 F )

NVF’: NF/; 1(5:8752875

The only allowed Yukawa couplings by SU2 ; ® U1 y invariance

Lare those in eq. 29 , with arbitrary complex couplings A ¢ g . —
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Spontaneous breaking of SU2 ;; ® U1 y through the vacuum

expected value(s)

900 o T
() (z) [€2) =
e~ @Y
(30) ven (07,) 0
=(z(z)) =
0 U ch (Ugh)
— L (VaG ) P = 1
Veh = 73 ( F) = 1 GeV
independent of the space-time point z @ —

The implied parallelizable nature of ( z () ) is by far not trivial and relates in a wider context

including SU?2 j, — triplet scalar representations to potential (nonabelian) monopoles and dyons.



/nm

B

induces a neutrino mass term through the Yukawa couplings A pr
in eq.

pNvep=Nipvlh=vip N
(31) WP = Ueh Apr f
— H, = F/N,LLF/FVF+h.c.:VT,LLTN+h.c.

The matrix 1 defined in eq. 31 is an arbitrary complex 3 X 3 matrix,
analogous to the similarly induced mass matrices of charged
leptons and quarks. In the setting of primary SO10 breakdown , a
general (not symmetric) Yukawa coupling A g ¢ implies the
existence in the scalar sector of at least two irreducible
representations (10) & (120) 2. o

a key question — a ’drift’ towards unnatural complexity ? It becomes even worse including the
heavy neutrino mass terms : 256 (complex) scalars.
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neutrinos oscillate like neutral Kaons (yes , but how ?) - Bruno Pontecorvo [*

3b ’Mass from mixing’ in vacuo or ‘'seesaw’

The special feature, pertinent to (electrically neutral) neutrinos is,
that the v— extending degrees of freedom N are singlets under the
whole SM gauge group G gy = SU3 . ® SU2 1 @ Ul y ,in
fact remain singlets under the larger gauge group SU> D G g .
This allows an arbitrary (Majorana-) mass term, involving the
bilinears formed from two N/ -s.

In the present setup (Minimal v-extended SM) the full neutrino
mass term is thus of the form —

a [ 7 ] Bruno Pontecorvo, ’Mesonium and antimesonium”, JETP (USSR) 33 (1957) 549, english trans-

lation Soviet Physics, JETP 6 (1958) 429. Here let me continue the 'flow of thought’ embedding neutrino

masses in SO10.
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v
HMZ%[VN]M + h.c.
N
(32) ] ]
0 pt
M = M=M= M =M"T
o M

Again within primary SO10 breakdown the full M extends the
scalar sector to the representations (10) & (120) & (126)2 —

It is from here where — to the best of my knowledge — the discussion of the necessarily nonvanishing
nature and of the magnitude of the light neutrino masses (re-) started in 1974 , [9] .
The structure in eq. [32 is reserved for the minimal SU2 1, X U1 y case 'tilted to the left’ [10] .

.
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Especially the 0 entry needs explanation. It is an exclusive property
of the minimal v-extension assumed here.

Since the 'active’ flavors v g all carry [ 3, = 5 terms of the form

DO|—

(33) %F'VXF'FVFZ%VTXV;XZXT

cannot arise as Lagrangean masses, except induced by an
I ,-triplet of scalars, developing a vacuum expected value
iIndependent from the doublet(s) .

seesaw
/

The relative 'size’ of ;x and M shall define the 'mass from mixing’
situation and segregates 3 heavy neutrino flavors from the 3 light
ones :

(34) S el < I M

o o
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vV (u=0)
Mass from mixing

Figure 2:

Key questions — which is the scaleof M 2 O ( 10 'V ) Gev —
is there any evidence for this scale today ? hardly ! — and what about susy ?
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We shall use the generic expansion parameter
v = ||p|l/|| M|| < 1-anddetermine a unitary 6 x 6 matrix
U with the property [11]

M :UMdia,gUT — Mdia,g —
M giag (M1, mao, ms3; My, Mo, Ms)

3c Diagonalization of M

0<mp < --- < Mg, mza < My
and U =TUqg : T MT 1T = M b diag. —

M 1 0 -
— — UOMdiagUo
0 M 5

L —

(35)
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The matrix 1" in eq. 35 describes the mixing of light and heavy
flavors, determined froma 3 X 3 submatrix t .

T —
(36) (1+ett)™2 (14 ety
et (1t (1t )T
The upper left 3 x 3 block of T (eq. 36) (1 + tﬂ)_l/2 causes

the (3 X 3 ) mixing matrix governing oscillations of light
(anti)neutrino’s to deviate from unitarity , i.e. it becomes subunitary,
but by a tiny amount since as we will discuss below

(37) [t]]* =S5 [tul® =0 (1072")

L —
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Fl'he matrix t in eq. IS reduced to diagonal form through two
unitary 3 X 3 matrices u and w @

t = u (tan adiag)w_l

A diag — adiag(ala a2, CLS)

(38)
0 <ap <7/2
ap < w/2ford = ||pll/||M]] < 1
t is determined from the quadratic equation
(39) t =pl M tP—tputM—1
which can be solved recursively —

2 n eq. a diag defines the three (real) heavy-light mixing angles a 1,2 3 , which without loss of

generality can be chosen in the first quadrant, but which are smallford = || pl|| /|| M || < 1
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Retting t st :MTM—l_tnluan—l

(40) to =ty —p'' M pptM M

In order to control convergence we introduce < the specific norms

a
[pll? =trpp'

(41) | M| 72 = tr M P M T
0= lpll/IIM] <1

2 The sequence defined in eq./40lis convergent for v < 1.
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u , w in eq. 38 contain all 9 CP violating phases, pertainingto T .
The above was intended to ’explain’ why the (un)observed light
neutrino masses are so much smaller than charged fermion ones.
key question — does it ? t = u ( tan a diag ) w -1 defined in eq. m)
and its determining equation, repeated below

t =pl M- tP—tptM—1

ensure block diagonal form of M ; giqg. -

Mprdgiag. = T P MT 1T

(42) M 1 0
M v diag. =

0 Mo
a
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( M, Mo ) forming M bl.diag. defined in eq. 42 become

M= (1 +tﬂ)_1/2 X

x |[—tp —pltt +tMtT] x

y (1 . ttT)—l/QT

(43)
My = (1 +tTt)_1/2 X
x [pt+tTu? + M] x

« (1 X tTt)—l/QT

Comparing M | with t M 5 t 1" we find

.
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the relation ®, [ 12 |
(44) Mi = —tMyt!

It follows from the assumptions detailed in footnote a , that

Dett # 0 and hence the heavy-light mixing angles a 123 > 0
defined in eq. 38 are strictly bigger than 0.

The lowest approximation,t — t;andand M 9 — M , yields
the first nontrivial approximation of the light neutrino mass matrix
In 'second order mixing’

(45) My ~MP = Ty

—

2 In the scenario adopted here, we further assume Det M % 0and Det u # 0. This leaves no
room for light ’sterile’ neutrinos, which would imply a nonminimal v—extension of the standard model.
This would be mandatory, if the results of the LSND collaboration are correct. [ 12 | G.B. Mills for the
LSND Collaboration , 'Results on neutrinos from LSND’ , published in *Stanford 1998, Gravity from
the Hubble length to the Planck length* 467-475, see the MiniBooNE Experiment [13] .
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f Remaining dagonalization of M 47 giag.
We go backtoeq. 35U = T Uy :
U o diagonalizes the 3 X 3 blocks M 1, M 9?2

1 T Mi 0
T tMT = Midiag. ;5 Mbldiag. =
0 M 9
u o 0
Uy = ~ UGl T = Tgigg (21, -+, £1)
0 wvo

T
M1 = ugmgigg(m1, mo, mg)uy

T;/\/l1 = —tMot?
Mo = voMgigg (M1, Mo, M3)vyg

41U ¢ is determined modulo diagonal (orthogonal , 6 X 6) matrices I = I 4;44 as shown
in eq. 46/, representing the discrete abelian group ( Z 9 ) ®6
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fT is constructed as a sequence ( eq. 40 ), convergent for
v = |||l /|| M|l < 1,asshown above, and thus unique.
As a consequence of eqs. 44 , 46 — t beeing determined (within 7")
— M 1 and M 5 and hence also u o and v g are not independent of
each other. We shall keep as independent variables M | and ¢
(or equivalently T7) .

4  Generic mixing and mass estimates

Here we introduce the arithmetic mean measure for 3 X 3 matrices

A, not to be confused with the norms || . || defined in eq. 41
(47) | A| = | Det A |3
Eq. 44 then implies —>

.
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- Mil /I Ma| = |t]?
(48) Ml = |maiag| = (mimams) /3
Mo | = Mdiag’:(MlMQMS)l/g

We consider the arithmetic mean of the light and heavy neutrino

masses and the coorresponding 'would be’ masses if 4 and I
would be the only parts of the full 6 X 6 mass matrix M

m:(mlmgmg)l/?’
M = (M MyMsz)'/3

(49) 1
o= U diag (J01s 2, H3) U,
_ 1/3
lu:(:ulalu“Qalu?))/
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Then beyond eq. 48 there is one more (exact) relation @
t = (tan a1 tan a9 tan a3)1/3 = ||
p]? = M| Ma]| —
m/a=t, m/M=t?

(50) .

or equivalently

~ S
m=tn J M=t"'%n

seesaw ( of type |)

2 for MSSM inspired seesaw of type Il realizations see e.g. [14] .

.
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Dhe estimates below are based on the assumption that the scalar
doublets (2) are part of a complex 10-representation of SO10 with
Yukawa couplings of the form

16 16 10
Hy = \pF riBfAF
B A D
(51)
+ h.c.
— AP Fp = AFF
It follows that at the unification scale we have ?# —

In order to obtain a general (not a symmetric) heavy-light mass matrix @& a combination of SO10
representations (120) & (10) is needed, which however would 'destroy’ the mass relation in eq. [51].

key question — is this relevant ? estimate shall be estimate .
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f(52) g

o= pt = fy

We shall use the relation at a scale near 100 GeV

(53) o~ s (o)

The factor % accounts for the color rescaling reducing the (colored)

up-quark mass matrix from the unification scale down to 100 GeV .
It follows using the definitions in eq. 49 and the quark masses

My ~ D20MeV,m, ~ 1.25GeVand m; ~ 180 GeV

Moy = (mumcmt)1/3 ~ 1GeV —
(54)

=|

1
~ gGeV

.
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Further lets approximate the mass square differences obtained
from the combined neutrino oscillation measurements by

Am?, ~ 10 tev?
(55)
Am3y ~ 2510 2ev?,

Finally "pour fixer les idées’ | set the lowest light neutrino mass
~ 1 meV and assume hierarchical (123) light masses. This implies

mi ~ 1mev, mo ~ 10 meV
(56)
ms3 ~ o0meV — m ~ 8 meV

.
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N

t follows from eq. 50

AN

t =m/@n ~ 24101
(57) M =7/t ~ 1410 Gev
t2 ~ 5810 %

Light neutrino masses are indeed small. Fa

5 Why is the large mass - scale so large ? — tentative thoughts —

a puzzling questions — is susy bringing down in 'small steps’ the B-L protecting mass scale
M =~ 14.10"TeVto1TeV?-0Oris M =~ 1.4.107 TeV in view of seesaw type Il too small ?

n — e-yatarate of ?

.
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— tentative thoughts

1) Exact symmetries are all (?) linked to unbroken gauge fields .
The most difficult such form the substrate of gravity , with
base quanta of spin 2 , which yet expose a characteristic

high (mass-) scale
B8 mp = (Gn) Y2 (h c)V/? ~ 1.22.1019 Gev / ¢?

Next in line of unbroken gauge fields are charge-like gauge bosons
base quanta of spin 1 with gauge group

(59) Gg = SU3,., x Ul .
The substrate of fermions , carrying the charges of (- 3 contains

the three families , with neutrino flavors omitted —

. -
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in the left - chiral basis (eq. 1) for one family

ul ”, N al \7 ¢
(60) dl e ‘ €+ C/Z\l
= (f)"

The scales of fermion masses, while parameters within the
conserved gauge interactions of (G 3 arise exclusively through

spontaneous breaking of the SM interactions with gauge group
GSM — SUgc X SUQL X Uly

(Qe.m./e = I3y ‘|_y§ I3y = ]3L)f

3 -

(61)
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through Yukawa couplings to one ( 2 ) doublets of scalars
as defined in eq.28

v p ! o T
(62) — =
14 4 © o0

in straightforward generalizations of eq. 29

(e0)*, (e ) ]
HY: (I)O’_(I)-F )\F/FX
(63) r e
_gfy _F

3 \



(64)

(65)

4tt

This way a plethora of base fermion masses is generated 2

My « = 9.25 MeV Me m, ~ 1.3GeV m ¢ ~ 170 GeVv
mq ., = 8.75 MeV Mms « = 175 MeV mbmbwll.QGeV
m e = 0.511Mev m, = 105.7Mev m, = 1.777 GeV

The mass values in eq. 64 represent a downfeed from the broken gauge sector of the SM
into parameter space of the SU3 . X U1 ¢.,m. unbroken gauge sector .

While the so induced mass scales overlap with the electroweak (breaking) scale(s) ,

the central scale of strong interactions (QCD) is not generated the same way :

it can be represented by the nucleon mass in the limitm ,, 4 — 0 or the inverse slope

of Regge trajectories

My (myqg — 0) ~09Gev ; 1/a ~ 1.02Gev

2 For the quark masses in the MS scheme — say — a reference scale ;&1 must be specified :

* stands here for u ~ 1 GeV [15], [16] .
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2) Hence we are led to include — through the intertwined nature
of scales — as next step G 5 alongside G 3, where
a typical scale characterizing electroweak gauge breaking

can be taken as

(66) v = 5 (V2Gp)

= 174.1 GeV

We face the appearance of 3 spin 1/2 fermion families ,

90 (96) degrees of freedom excluding (including) heavy neutrino

flavors . In this connection the nature of global , ungauged

charge-like symmetries : exactly «<— approximately conserved
B,LF,L:ZFLF,B—L

becomes an urgent question .
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Individual B and L g conservations are broken by anomalies in the
SM, whereas B — L without minimal neutrino mass extension to
N g flavors — B — L (15) is broken by a graviational anomaly

dtu\Tgl Drj ~* W =34, (X)
(X) = —g7trX?

A
(X)%y = gzadat Adx” (RY,)
(67)

Riemann curvature tensor
Ra . _ a
b v . mixed components : b — tangent space

U v > covariant sSpace
. B — L (16
D" 16 _ g

Lmeq.m A(X — A) = 1)/ sinh(iN) -



Ttt

-

denotes the Atiyah - Hirzebruch character or A— genus [17] with
Its integral over a compact , euclidean signatured closed manifold
M 4 , capable of carrying on SO4 - spin structure , becomes the
Index of the associated elliptic Dirac equation

(68) /E(XE):nR—nL:integer

In eq. 68 n g 1, denote the numbers of right - and left - chiral
solutions of the Dirac equation on M 4 . Theindex p — X g shall
Indicate the euclidean transposed curvature 2 - form , opposite to
physical uncurved space time [18] .

For the latter case the first relation in eq. 67 yields the integrated
form — in the limit of infinitely heavy N  — —

.
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Apepny = [d'aTgTDrj 7 0 =5 an(A)

3 = number of families = odd ; myr — 0
(69)
Ineq. 69 A g_r n, denotes the difference of right - chiral ()
and left - chiral ( v ) flavors between times t — + 0.
Here a subtlety arises precisely because the number of families on
the level of G g7 is odd , and the light neutrino flavors are not
'Dirac - doubled’ , which according to eq. 69 could potentially lead
to a change in fermion number beeing odd , which violates the

rotation by 27 symmetry , equivalentto © 2 unless

AN

(70) An(A) = even (4 fordim = 4mod38)

B -
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This leads to the following collection of questions undecidable ( or unanswerable ) within the SM and with

this on the level of scales characteristic of electroweak gauge breaking

questions potential answers
at unknown scale

3 colors ? octonion structure
3 families ? — exceptional groups
)
1
quantized elementary electric charges ? replica- > charge-like simple gauge group(s)
product of
origin of the ’tilt to the left’ ? no anwer but : what means left ?

B, B - L violation driven by M ~ 1019 Gev? large scale protects at low scale

spins other than 0, % , 1, 2 supersymmetry , supergravity

d = 1 + 3 dimensions and gravity ? target space <«— base space




-

3)

10tt

Apparent paradox of unification of forces and stability of large , primary

breakdown scales of order M ~ 109 Gev — —m p; ~ 1019 Gev

In a concluding remark ( not a conclusion ) let me point out that the example of the large scale
inherent in heavy neutrino masses is not only responsible for the small masses of observed
neutrino flavors , but at the same time the stability of M ~ 10 0Gev-a key feature
unexplained so far — serves as protecting scale for the approximative conservation of leptonic
(as well as baryonic) numbers at electroweak scales much below M .

As a consequence even a unified charge-like gauge group S0O10, E6 --- acts first
through a primary breakdown of local gauge invariance at scales M unif ™~ 10 16 Gev,

which produces essential deviations from unified symmetries .

asymmetry is the sister of symmetry
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Al Appendix 1 (6’ ;

~

Combining egs. 12/and (14 it follows , for C , P

)
~)
N——"

P : . :
({r©@y ) =(—icf=(Pz)) = (ivof @ (Px)) = ({4 1) )
CP~PC ; P2~ — q
(71)
The symbol ~ in eq. [71 shall indicate that the operators are restricted to their action on the fermion

families ( f) & 4 and their (re)projectable chiral L and R bases .

Fora, fwe have
({r©@}7) = (CroCrsf*(Te)) = (CysCrof*(Ta))

72) - ({4 1D)
CT ~TC . T2 ~ — ¢

(V)

We note without explicit proof
(73) TP~ —PT

. .
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We repeat eq. |17 as eq. 74 below

(74) O (fa(z))O = (—i{fal}® (-2))

foz(y) :Ea’y{f"y }*(y)

From the last relation in eq. 74 we obtain
61 fa(y)® =cay {O 118} (y) = —icarfT(—y)
= (=) {ear (S7) (=)}
= (=) {fa}" (=9) (V)

(75)
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A2 Appendix 2 : chiral projection onto chiral bases ¥ — L and o — R
We report from eq. 6|
¥ = L
ul u? v | N u? aul
dt d~? e | e 4?2 dl
1 2 4 1 11 12 oL
(76) frof? o f I S | f
f5 f6 f7 f8 | f13 f14 f15 f16
NS
vy — L
A -
=(e 1 7)
A



(77)
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Collecting both chiral projections on (anti-)lepton flavors in eqs. 76 and[77 we obtain

¥ — L N ¥ — L
R 1%
(e | E> N e | eT
~ N | D
(78) (E ‘ £>OHR e | et Ja—r
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