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Abstract

The three light neutrino flavors exhibit mass scales ranging from 1 - 100 meV and thus are among

elementary local fields closest in mass to the gauge bosons of the unbroken gauge groups

of QCD-QED . The discussion of oscillation phenomena is comp ared and contrasted with

coherence properties of QCD gauge bosons (gluons) .
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1-1

1 - Neutrino flavors, neutrino mass extension and gravity

1-1 There does not exist a symmetry – within the standard mode l including gravity

and containing only chiral spin 1
2

16 families of SO (10) –

which could enforce the vanishing of neutrino mass(es) .

Here I follow the exposition of ideas originating around 197 3/74 upon my arrival to Caltech, whence we

continued our collaboration on gauge theories of strong and electroweak interactions with Harald

Fritzsch. A resum é of this extended work is published in ref. [1n-1975] .

The divergence of the current associated to the global charg e B - L for three standard model families of

15 base fields – in the left chiral basis removing – to infinite m ass – the 16-th components (N )

pertaining to one full 16-representation of SO (10) [ spin (10) ]

0
B@

u 1 u 2 u 3 ν | N bu 3 bu 2 bu 1

d 1 d 2 d 3 e − | e + bd 3 bd 2 bd 1

1
CA

γ̇ → L

= ( f ) γ̇
(1)

and admitting a gravitational background field is in this min imal neutrino flavor embedding anomalous ,

i.e. the global symmetry is broken by winding gravitational fields [2n-2001] , in a form concretized later

than 1973 . For a more complete account of left- and right-chiral bases see also [3n-2007] . →
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1-2

j ̺ (B − L )| 3×15 =

P
fam

2
66666666664

1
3

“
( u ∗ ) α ċ ( σ µ ) α γ̇ ( u ) γ̇ c − ( bu ∗ ) α c ( σ µ ) α γ̇ ( bu ) γ̇ ċ

”

+ 1
3

„
( d ∗ ) α ċ ( σ µ ) α γ̇ ( d ) γ̇ c −

“
bd ∗

” α c
( σ µ ) α γ̇

“
bd

” γ̇ ċ
«

−
`
e − ´ ∗ α

( σ µ ) α γ̇
`
e − ´ γ̇

+
`
e +

´ ∗ α
( σ µ ) α γ̇

`
e +

´ γ̇

− ( ν ) ∗ α ( σ µ ) α γ̇ ( ν ) γ̇

3
77777777775

e µ̺

g ̺ τ = e µ̺ η µ ν e
ν
τ : metric ; e µ̺ : vierbein ; ∗ : hermitian operator conjugation

( u ∗ ) α ċ ≡
`
u α̇ c

´ ∗
; η µν = diag ( 1,−1,−1,−1 ) : tangent space metric

c
`
ċ

´
: color and anticolor ; c = 1, 2, 3

(2)

The contribution of charged fermion (pairs) q , bq ; e ∓ can be combined to vector currents – Dirac

doubling – q γ µ q ; e γ µ e with q → u, d, c, s, t, b ; e → e −, µ −, τ − . →
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1-3

The anomalous Ward identy for the B - L current ( - density ) defi ned in eq. 2 takes the form

d 4 x
p
| g | D ̺ j ̺ (B − L ) | 3×15 = 3 bA 1 (X )

bA 1 (X ) = − 1
24
trX 2 ; (X ) a b = 1

2 π
1
2
d x ̺ ∧ d x τ

`
R a

b

´
̺ τ

`
R a

b

´
̺ τ

:

8
><
>:

Riemann curvature tensor

mixed components : a
b → tangent space

µ ν → covariant space

D ̺ j ̺ (B − L ) | 3×(16) = 0 strictly just non-anomalous →

(3)

Before discussing the extension j ̺ (B − L ) | 3×(15) → j ̺ (B − L ) | 3×(16) which renders

the latter current non-anomalous, lets define the quantities appearing in eq. 3 :

`
R a

b

´
̺ τ

= e aµ e b ν
`
R µ

ν

´
̺ τ

; e b ν = η bb′ e
b′
ν

`
R µ

ν

´
̺ τ

= ( ∂ ̺ Γ τ − ∂ τ Γ ̺ + Γ ̺ Γ τ − Γ τ Γ ̺ ) µ ν

`
Γ µ

ν

´
τ

: matrix valued (GL ( 4 , R ) ) connection ; minimal here

(4)

→
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For clarity eq. 3 is repeated below

d 4 x
p
| g | D ̺ j ̺ (B − L )| 3×15 = 3 bA 1 (X )

bA 1 (X ) = − 1
24
trX 2 ; (X ) a b = 1

2 π
1
2
d x ̺ ∧ d x τ

`
R a

b

´
̺ τ

`
R a

b

´
̺ τ

:

8
><
>:

Riemann curvature tensor

mixed components : a
b → tangent space

µ ν → covariant space

D ̺ j ̺ (B − L ) | 3×(16) = 0 strictly just non-anomalous →

(3)

In eq. 3 bA (X → λ ) = 1
2
λ / sinh ( 1

2
λ ) denotes the Atiyah - Hirzebruch character or bA−

genus [4n-1966] . Its integral over a compact , euclidean sig natured closed manifold M 4 , capable of

carrying an SO4 - spin structure , becomes the index of the ass ociated elliptic Dirac equationZ
bA (X E ) = n R − n L = integer(5)

In eq. 5 n R,L denote the numbers of right - and left - chiral solutions of th e Dirac equation on M 4 .

The index E → X E shall indicate the euclidean transposed curvature 2 - form , and is adapted here to

physical curved and uncurved space time . →
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For the latter case the first relation in eq. 3 yields the integ rated form – in the limit of infinitely heavy

N F ( eq. 67 ) –

∆ R−L n ν =

Z
d 4 x

p
| g | D µ j

B − L (15)
µ = 3 ∆ n ( bA )

3 = number of families = odd ; m ν F
→ 0

(6)

In eq. 6 ∆ R−L n ν denotes the difference of right - chiral ( bν ) a and left - chiral ( ν ) flavors between

times t → ±∞ .

Here a subtlety arises precisely because the number of families on the level of G SM is odd , and the

light neutrino flavors are not ’Dirac - doubled’ , which accor ding to eq. 72 could potentially lead to a

change in fermion number being odd , which violates the rotat ion by 2 π symmetry , equivalent to
bΘ 2 =

`
CPT 2

´
, unless b

∆ n ( bA ) = even (
√

for dim = 4 mod 8 )(7) →
a bν α ≡ ε α β ( ν ∗ ) γ ; ε = i σ 2 ; ( 2nd Pauli matrix ) stands for the left-chiral neutrino

fields transformed to the right-chiral basis .
b

The obviously nontrivial relation between the compact Eucl idean - and noncompact asymptotic and

locality restricted form of the index theorem involves not c learly formulated boundary conditions .
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1-6

We now turn to the SO (10) inspired cancellation of the gravit y induced anomaly, giving rise to the

completion of neutrino flavors to 3 families of 16-plets , som etimes called ’right-handed’ neutrino flavors,

denoted N in the left-chiral basis in eq. 1

0
B@

u 1 u 2 u 3 ν | N bu 3 bu 2 bu 1

d 1 d 2 d 3 e − | e + bd 3 bd 2 bd 1

1
CA

γ̇ → L

= ( f ) γ̇
(1)

j ̺ (B − L ) | 3×15 → j ̺ (B − L ) | 3×16
(8)

d 4 x
p
| g | D ̺ j ̺ (B − L ) | 3×15 = 3 bA 1 (X )

bA 1 (X ) = − 1
24
trX 2 ; (X ) a b = 1

2 π
1
2
d x ̺ ∧ d x τ

`
R a

b

´
̺ τ

`
R a

b

´
̺ τ

:

8
><
>:

Riemann curvature tensor

mixed components : a
b → tangent space

µ ν → covariant space

D ̺ j ̺ (B − L ) | 3×(16) = 0 strictly just non-anomalous →

(3)
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j ̺ (B − L ) | 3×15 → j ̺ (B − L ) | 3×16 =

P
fam

2
666666666664

1
3

“
( u ∗ ) α ċ ( σ µ ) α γ̇ ( u ) γ̇ c − ( bu ∗ ) α c ( σ µ ) α γ̇ ( bu ) γ̇ ċ

”

+ 1
3

„
( d ∗ ) α ċ ( σ µ ) α γ̇ ( d ) γ̇ c −

“
bd ∗

” α c
( σ µ ) α γ̇

“
bd

” γ̇ ċ
«

−
`
e − ´ ∗ α

( σ µ ) α γ̇
`
e − ´ γ̇

+
`
e +

´ ∗ α
( σ µ ) α γ̇

`
e +

´ γ̇

− ( ν ) ∗ α ( σ µ ) α γ̇ ( ν ) γ̇ + (N ) ∗ α ( σ µ ) α γ̇ (N ) γ̇

| {z }

3
777777777775

e µ̺

g ̺ τ = e µ̺ η µ ν e
ν
τ : metric ; e µ̺ : vierbein ; ∗ : hermitian operator conjugation

( u ∗ ) α ċ ≡
`
u α̇ c

´ ∗
; η µν = diag ( 1,−1,−1,−1 ) : tangent space metric

c
`
ċ

´
: color and anticolor ; c = 1, 2, 3

D ̺ j ̺ (B − L ) | 3×(16) = 0 strictly just non-anomalous →
(9)
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Let me illustrate the triple-doubling inherent in the elimi nation of the anomaly in the covariant divergence

of j ̺ (B − L ) | 3×15 in eq. 2 as seen through the left-chiral basis , repeating onl y the ν , N
components of the B - L current in eq. 9

j ̺ (B − L ) | 3×16 =

P
fam

2
664

· · ·

− ( ν ) ∗ α ( σ µ ) α γ̇ ( ν ) γ̇ + (N ) ∗ α ( σ µ ) α γ̇ (N ) γ̇

| {z }

3
775

ν γ̇F N γ̇
F

B − L −1 +1

; F = 1, 2, 3 family

(10)

a

a
In a less definite framework we looked with Wim Brems and Ian Ol sen for a symmetry ensuring

vanishing neutrino masses at the University of Louvain or Le uven 1968/69 – proving similarly that lepton

flavor violating interactions do not allow to generate such a symmetry in general.
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1-2 Consequence from section 1-1

The consequence is clearly that within the structure of know n gauge interactions minimally reduced to

what is called the Standard Model is not adequate to generate exactly massless – minimally three

Majorana type neutrino flavors – with masses well below the 1 e V scale . In addition exact lepton flavor

conservation is equally impossible to maintain.

Yet up to here there is no estimate of quantitative levels of t he so implied effects – called ’beyond the

Standard Model’ . To this end present knowledge of neutrino o scillation phenomena as well as specific

model dependent schemes can and must be invoked.

For an alternative but nonrealistic way to guarantee vanish ing neutrino masses, already ruled out by the

present observations of neutrino oscillations, I refer to r ef. [5n-2008] .

Comment on the elliptic Dirac equation in Euclidean space ti me and the Atiyah - Hirzebruch genus

It may appear illogical , that the characteristic function d etermining an index pertaining to a system of

elliptic differential equations, the book on relativity by Pauli can lead the way [6n-1963]

bA (X → λ ) = 1
2
λ / sinh ( 1

2
λ )(11)

in eq. 3 involves a hyperbolic function. This is due to the con vention to use antihermition matrices for

the generators of a Lie algebra in the mathematical literatu re . The substitution to hermitian logic yields

X = 1
i
Y → λ = 1

i
Λ → 1

2
λ / sinh ( 1

2
λ ) = 1

2
Λ / sin ( 1

2
Λ )(12)
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2 Quantum interference in vacuo of a neutrino beam from y → x

After the preparation of a neutrino beam at y , sufficiently re moved from any interaction points – lets say

for CNGS at CERN – we deal with a wave of positive frequencies c omposed of a mixture of mass

eigenstates. This wave packet carries the label of an associ ated charged lepton or antilepton , which we

take to be an antilepton to promote the main neutrino compone nt of the beam relative to the antineutrino

one. But we have to distinguish states from wave functions he re.

So lets consider the mass eigenstates of free neutrino fields α , m α and corresponding momentum

eigenstates

| Z α , y 〉 =

„ Z
d 3 p ( 2 π ) −3 Ψ α ( ~p , h ) exp ( i ~p ~y ) exp(− i E ( ~p , m α ) y 0 )

«
| ~p , h , α 〉

E ( ~p , m α ) = +
p
~p 2 + m 2

α

(13)

So Ψ α ( ~p , h ) is the momentum space wave function, where h shall be chosen t o be helicity , i.e.

mainly -1 for neutrinos, and which can be rendered covariant by mult iplication with momentum base

spinors , with suitable normalization conditions. →
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2-2

Dropping the spinor component A for brevity we have

u A ( p , h , α ) ; A = 1, · · · , 4 ; h = ∓

( p µ γ µ − m α ) u ( p , h , α ) = 0 ;
“
~Σ ~p / | ~p |

”
u = h u

~Σ =

0
@ ~σ 0

0 ~σ

1
A ; ~σ : Pauli matrices

(14)

When considering mixtures of states , it is important to reta in the strict orthogonality relations of the

momentum states , with respect to the mass flavor α , which can be chosen mass independent , e.g.
D
~p

′

, h
′

, β | ~p , h , α
E

= δ β α ( 2π ) 3 δ 3 ( ~p
′ − ~p ) δ

h
′
h

(15)

and not superimpose wave functions linearly with different values of α . This is a subtlety with various

strange inconsistencies attached. To illustrate this, let s for a moment consider only one given α and the

associated wave function corresponding to eq. 13

( Ψ |Ψ ) =

Z
d 3 y Ψ † Ψ ; Ψ A ( y ) =

P
h

Z
d 3 p ( 2π )−3 Ψ α (~p , h) exp ( i ~p ~y ) exp (− i E ( ~p , m α ) y 0 ) u A ( p , h , α )

(16) →

– p. 21



2-3

Then the same wave function propagated to the point x , e.g. wi thin the Opera detector at Gran Sasso,

but in time x 0 later than production at y 0 , can be represented by means of the free field propagator

dropping the spinor index A

ϑ ( x 0 − y 0 ) Ψ ( x ) =

Z
d 3 x

′

S ( x − x ′

, m α) γ 0 Ψ ( y 0 , ~x
′

)(17)

Properties and m α dependence of the quantity S ( x − x ′

, m α) are collected in Appendix A , but

here I emphasize , that the large coherence enhancement in ne utrino oscillation is negligibly modified by

the propagator , as it does further depend on the mass(es) m α for beam mean momenta much larger

than nu- masses and mass differences.
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2-1 A shortcut showing the main oscillation pattern

Despite the remarks in the last section (1-3) the oscillatio n pattern can be rduced up to higher orders with

respect to m α / | 〈 p 〉 | , where | 〈 p 〉 | denotes the absolute value of the mean beam three

momentum, to the phase distortion in the scalar productZ
d 3 p ( 2π ) −3 Φ ∗ ( ~p , (′) ) ℓ

′

u ∗
ℓ
′
β
u ℓ α Φ ( ~p ) ℓ ×

× exp
`

+ i
`
E ( p , m β ) − E ( p , m α )

´
∆ t

´(18)

In eq. 18 the wave functions Φ ℓ (′ , ℓ
′
) represent production and detection of neutrino flavors

associated with ℓ and ℓ
′

respectively. ∆t can be set to the mean light-distance between production and

detection for | 〈 p 〉 | ≫ m α

∆ t = dD−P / c ; (c = 1)(19)

u ℓ α , u ℓ ′
β

in eq. 18 refer to mixing parameters deducible from a definite scheme, describing heavy

and light neutrino flavors . In the minimal ’seesaw’ or ’mass b y mixing’ scheme, adapted in general form

in common work with Harald Fritzsch and also with Murray Gell -Mann [7n-1975] , [8n-1976] there are

three, electroweak singlet heavy neutrino flavors, with mas ses much larger in a specific way than quark

and charged lepton ones. →
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In these papers the central characteristic of the so called ’ tilt to the left’ was not recognized but instead

vecor-like electroweak currents were studied. As far as neu trino oscillation properties are concerned this

fact is not relevant. A historical overview is given in ref. [ 9n-2005] .

Lets now discuss the simple meaning of the energy difference in eq. 18

E ( p , m β ) − E ( p , m α ) =

m 2
β − m 2

α

E ( p , m β ) + E ( p , m α )

E ( p , m β ) + E ( p , m α ) ∼ 2 | ~p | / 〈 v 〉

〈 v 〉 ∼
˙
| ~p | / 1

2

`
E ( p , m β ) + E ( p , m α )

´ ¸

(20)

Thus substituting for excellent detector efficiency the mea n beam absolute momentum values →
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the phase factor in eq. 18 becomes

`
E ( p , m β ) − E ( p , m α )

´
∆ t →

m 2
β − m 2

α

2 〈 |~p | 〉
d D−P

= 2 π
`
d D−P / L α β

´

〈 v 〉 ∆ t → dD−P ; L α β = 4 π 〈 |~p | 〉 /∆ β α m
2

(21)

The quantum coherence phenomena behind the phase as derived here in section 2, will not be discussed

in detail. Instead let me quote a paper devoted to this topic b y Carlo Giunti [10n-2008] and references

cited therein.

The tiny long range e.m. dipole-dipole interactions pose a q uestion as to light neutrino flavors

developing a vacuum fermionic pair condensate [11n-2008]. For the remaining sections we turn to the

apparently disjoint topic of the gauge boson pair condensat e in QCD. →
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3 Bosonic paired oscillator modes
arising from the two central local anomalies in QCD : scale an d chiral U1 [1o-2006]

We consider first one pair a , b ; a 6= b together with their adjoint operators denoted a ∗ , b ∗ of

associated bosonic oscillators, satisfying the commutati on relations

[ a , a ∗ ] = ¶ , [ b , b ∗ ] = ¶

[ a , a ] = [ b , b ] = [ a , b ] = [ a , b ∗ ] = 0 & a , b → a ∗ , b ∗
(22)

Following John von Neumann [2o-1931] , but extending to a pair, the system in eq. 22 is equivalent –

modulo unitary transformations – to the following set of ope rators in the Hilbert space over one complex

variable ζ = ξ + i η

A =
√

2 a = ∂ ζ + ζ , A ∗ =
√

2 a ∗ = − ∂ ζ + ζ

B =
√

2 b = ∂ ζ + ζ , B ∗ =
√

2 b ∗ = − ∂ ζ + ζ
(23)

The operators a ↔ b represented in eq. 23 are phase related and thus it is useful t o specify the phase

equivalence, which enlarges to a U2 equivalence of two oscillators

a = a 1 → e i α a

b = a 2 → e i β b

−→ f σ = U στ a τ ; σ, τ = 1, 2(24)

→
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for arbitrary phase factors e i α , e i β and more generally U2 matrix transformations U στ , as shown

in eq. 24 , which leave the commutation relations in eq. 22 inv ariant .

The complex and complex conjugate derivatives are related t o the variables ξ , η ↔ ζ , ζ

∂ ξ = ∂ζ + ∂ ζ , ∂ η = i
“
∂ ζ − ∂ ζ

”

∂ ζ = 1
2

`
∂ ξ − i ∂ η

´
, ∂ ζ = 1

2

`
∂ ξ + i ∂ η

´

δ = ∂ ζ ∂ ζ = 1
4

∆ ; ∆ = ∂ 2
ξ + ∂ 2

η

(25)

The paired operators A , B as defined in eq. 23 have the representation

A =
√

2 a = e − ζ ζ
`
∂ ζ

´
e ζ ζ , A ∗ =

√
2 a ∗ = − e ζ ζ

“
∂ ζ

”
e − ζ ζ

B =
√

2 b = e − ζ ζ
“
∂ ζ

”
e ζ ζ , B ∗ =

√
2 b ∗ = − e ζ ζ

`
∂ ζ

´
e − ζ ζ

(26)

understood to act from the left on an element of ψ ( ζ , ζ ) ∈ L 2 [ ξ , η ] , as e.g.

A : ψ → A ψ = e − ζ ζ
`
∂ ζ

´ “
e ζ ζ ψ

”
(27)

→
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3-1 ’Normal’ modes of one pair of oscillators

The ’normal’ ground state for the representation of the pair ed oscillator operators defined in

eqs. 22 and 23 satisfies the equations

|Ω 〉 ↔ ψ Ω ( ζ , ζ )

A |Ω 〉 = 0 , B |Ω 〉 = 0 → ψ Ω = N e − ζ ζ
(28)

In eq. 28 N > 0 denotes a normalization constant chosen here according to t he L 2 ( ξ , η ) norm

〈Ψ | Ψ 〉 ζ =

Z
d 2 ζ |Ψ | 2 ; d 2 ζ = d ξ d η

Z
d 2 ζ e − 2 λ |ζ | 2

= π / ( 2 λ ) for λ > 0 → N = ( 2 / π )
1

2

(29)

The associated harmonic oscillator ’Hamiltonian’ is forme d from the four positive (semi-)definite

products

A ∗ A = − δ + | ζ | 2 + ζ ∂ ζ − ∂ ζ ζ , A A ∗ = − δ + | ζ | 2 + ∂ ζ ζ − ζ ∂ ζ

B ∗ B = − δ + | ζ | 2 − ∂ ζ ζ + ζ ∂ ζ , B B ∗ = − δ + | ζ | 2 − ζ ∂ ζ + ∂ ζ ζ

H = 1
4

(A ∗ A + AA ∗ + B ∗ B + B B ∗ ) = − δ + | ζ | 2
(30)

→
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Transforming to the normal ordered operators A ∗ A , B ∗ B , H in eq. 30 becomes

AA ∗ = A ∗ A + 2 ¶ →

H = a ∗ a + b ∗ b + ¶ = − δ + | ζ | 2
(31)

In view of the U2 redundancies shown in eq. 24 the operators a , b are not the same as the pair f , g

which decompose harmonic motions along the ξ (f) and η (g) axes respectively .

Even if obvious we choose to make the relation explicit using eqs. 23 and 25

A = + ∂ ζ + ζ =
`

+ 1
2
∂ ξ + ξ

´
− i

`
+ 1

2
∂ η + η

´

A ∗ = − ∂ ζ + ζ =
`
− 1

2
∂ ξ + ξ

´
+ i

`
− 1

2
∂ η + η

´

B = + ∂ ζ + ζ =
`

+ 1
2
∂ ξ + ξ

´
+ i

`
+ 1

2
∂ η + η

´

B ∗ = − ∂ ζ + ζ =
`
− 1

2
∂ ξ + ξ

´
− i

`
− 1

2
∂ η + η

´

→

f = f 1 = 1
2
∂ ξ + ξ , f ∗ = − 1

2
∂ ξ + ξ

g = f 2 = 1
2
∂ η + η , g ∗ = − 1

2
∂ η + η

(32)

Substituting f, g in eq. 32 we obtain →
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for the matrix U in eq. 24

f σ = U στ a τ ; U = 1√
2

0
@ 1 − i

1 + i

1
A ; Det U = i(33)

For H we have the equivalent forms

H = a ∗ a + b ∗ b + ¶ = f ∗ f + 1
2
¶ + g ∗ g + 1

2 ¶(34)

3-2 Standard single oscillator variables

The standard single oscillator variables are obtained thro ugh the substitution

ζ = 1√
2
Z ; ( ξ , η ) = 1√

2
(X , Y ) ; ( ∂ ξ , ∂ η ) =

√
2 ( ∂ X , ∂ Y ) →

f = 1√
2

( ∂ X + X ) ; f ∗ = 1√
2

(− ∂ X + X )

g = 1√
2

( ∂ Y + Y ) ; g ∗ = 1√
2

(− ∂ Y + Y )

f ∗ f + + 1
2
¶ = 1

2

`
− ∂ 2

X + X 2
´

; g ∗ g + + 1
2
¶ = 1

2

`
− ∂ 2

Y + Y 2
´

(35)
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3-3 Coherent pair mode states

We go back to the oscillator variables ζ , ζ and the oscillator operators given in eq. 26 and consider the

pair mode generators

a ∗ b ∗ = 1
2
e ζ ζ ( δ ) e − ζ ζ ; δ = ∂ ζ ∂ ζ = 1

4
∆ ( ξ , η ) = 1

2
∆ ( X , Y )(36)

The substitution ζ = 1√
2
Z is more suitable in this context , yielding

a ∗ b ∗ = 1
4
e

1

2
| Z | 2

∆ ( X , Y ) e
− 1

2
| Z | 2

(37)

together with the modified L 2 (X , Y ) norm relative to the norm defined in eq. 29

〈Ψ | Ψ 〉 Z =

Z
d 2 Z |Ψ | 2 ; d 2 Z = d X d Y = 2 d 2 ζ(38)

This leads to the associated modification of the normalizati on constant for the ’normal’ oscillator ground

state , defined in eq. 28

|Ω 〉 ↔ Ψ Ω ( Z , Z ) = 1√
2
ψ Ω ( ζ , ζ )

A |Ω 〉 = 0 , B |Ω 〉 = 0 → Ψ Ω = N ′

e − 1

2
| Z | 2

N ′

= π − 1

2

(39)

→
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The coherent (unnormalized) pair mode state shall be defined in analogy with the coherent single mode

one as

ψ coh−2b ( τ ) = exp ( τ a ∗ b ∗ ) Ψ Ω ; τ ≥ 0 , to start

exp ( τ a ∗ b ∗ ) = e
1

2
| Z | 2

e
τ
4

∆ e − 1

2
| Z | 2

; ∆ = ∂ 2
X + ∂ 2

Y

(40)

In eq. 40 e
τ
4

∆ denotes the heat kernel H ( τ ; Z − Z ′

) satisying the heat diffusion equation

∂ τ H( τ ; u ) = 1
4

∆H( τ ; u ) ; u = ( u , v ) ; ∆ = ∂ 2
u + ∂ 2

v

Z = (X , Y ) ; u = Z − Z ′

with the initial condition H ( 0 ; u ) = δ 2 ( u )

(41)

We derive the form of H ( eq. 65 ) in eppendix 1 for completeness

Z → Z , Z ′ → T , u → u = Z − T

H( τ ; u ) =
1

π τ

exp

2
64 −

u 2

τ

3
75

(42)

→
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ψ coh−2b in eq. 40 thus takes the form

| Z | 2 → Z 2 , · · · ; N ′

= π − 1

2

ψ coh−2b ( τ ) = N ′

e
1

2
Z 2

Z
d 2 T H( τ ; Z − T ) e − T 2

(43)

The integral in eq. 43 as worked out in Appendix 2 ( eq. 66 ) beco mes

I =

Z
d 2 T H( τ ; Z − T ) e − T 2

=
1

π τ

Z
d 2 T exp

2
64 −

Z 2 − 2 Z T + ( 1 + τ ) T 2

τ

3
75

=
1

1 + τ

exp

2
64 −

Z 2

1 + τ

3
75

(44)

It remains to implement all factors in eqs. 43 and 44 →

– p. 33



3-3-4

to obtain ψ coh−2b = N ′

e
1

2
Z 2

I and the normalized wave function

Ψ coh−2b = N ′′

ψ coh−2b ; N ′′

=
√

1 − τ 2

ψ coh−2b =
1

√
π ( 1 + τ )

exp

2
64 − 1

2

1 − τ

1 + τ

Z 2

3
75

Ψ coh−2b =
1

√
π

0
B@

1 − τ

1 + τ

1
CA

1

2

exp

2
64 − 1

2

1 − τ

1 + τ

Z 2

3
75

〈Ψ coh−2b | Ψ coh−2b 〉 Z =

Z
d 2 Z

˛̨
˛ Ψ coh−2b

˛̨
˛
2

= 1

−→ 0 ≤ τ < 1

(45)
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3-4 Extending one pair of oscillators to variable oscillato r ’scale’

and so extended Bogoliubov transformations [3o-1947] , [4o -2002]

It is straightforward to extend the variable τ introduced in subsection 3-3 (osc-1c) ( to be checked ) to

complex values in the strip

τ = χ + i ϑ : 0 ≤ ℜ τ = χ < 1(46)

Next we consider the operators exp ( τ a ∗ b ∗ ) defined in eq. 40 for ℜ τ = 0

ℜ τ = 0 → ∂ τ = 1
i
∂ ϑ

X ( ϑ ) = exp ( i ϑ a ∗ b ∗ ) →

{a} ( ϑ ) = X (− ϑ ) a X ( ϑ ) = exp (− i ϑ a ∗ b ∗ ) a exp ( i ϑ a ∗ b ∗ )

(47)

The ϑ family of operators {a} ( ϑ ) satisfies the differential equation and initial condition

∂ ϑ {a} ( ϑ ) = i X (− ϑ ) [ a, a ∗ b ∗ ] X ( ϑ ) = i b ∗ ; {a} ( 0 ) = a(48)

Eq. 48 can be integrated and gives

{a} ( ϑ ) = a + i ϑ b ∗ ↔ {a} ∗ ( ϑ ) = a ∗ − i ϑ b

↔ {a} ∗ ( ϑ ) = {a ∗} ( ϑ ) = ( {a} ( ϑ ) ) ∗
(49)

→
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Similarly to {a} ( ϑ ) defined in eq. 47 we form the family {b } ( ϑ )

{b} ( ϑ ) = X (− ϑ ) b X ( ϑ ) = exp (− i ϑ a ∗ b ∗ ) b exp ( i ϑ a ∗ b ∗ )

∂ ϑ {b} ( ϑ ) = i a ∗ −→ {b} ( ϑ ) = b + i ϑ a ∗ & {b} → {b ∗}
(50)

Eqs. 48 and 50 yield for the four associated families {a} ↔ {a ∗} , {b} ↔ {b ∗}

{a} ϑ = a + τ b ∗ ↔ {a ∗} ϑ = a ∗ + τ ∗ b

{b} ϑ = b + τ a ∗ ↔ {b ∗} ϑ = b ∗ + τ ∗ a

τ = i ϑ

(51)

I call the associations in eq. 51 →
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’scale’-extended Bogolioubov transformations , rewritte n in eq. 52 below . The quotes in ’scale’ are to

indicate , that the variables Z describing an oscillator paired system do not have any immed iate

relation to the length scale of configuration space variable s .

a → {a} ϑ = a + τ b ∗ ↔ a ∗ → {a ∗} ϑ = a ∗ + τ ∗ b

b → {b } ϑ = b + τ a ∗ ↔ b ∗ → {b ∗} ϑ = b ∗ + τ ∗ a

τ = i ϑ = − τ ∗

(52)

We verify first the (nontrivial) homogeneous commutation re lations
ˆ
{a} ϑ , {b} ϑ

˜
=

ˆ
{a} ϑ , {b ∗} ϑ

˜
= 0 & {a} ϑ ↔ {b} ϑ ∀ ϑ(53)

The inhomogeneous ones reveal a subtlety beyond re’scaling ’
ˆ
{a} ϑ , {a ∗} ϑ

˜
=

ˆ
{b} ϑ , {b ∗} ϑ

˜
=

`
1 − | τ | 2

´
¶(54)

The regions | τ | < 1 and | τ | > 1 reverse the role of creation and destruction operators assi gned

to {a , b} ϑ ; | τ | < 1 and {a ∗ , b ∗} ϑ ; | τ | > 1 respectively , while for | τ | = 1 all

commutation relations become homogeneous. →
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Hence we devise the following identifications , not modifyin g the definitions of the four families in eqs.

51 , 52

{a} ϑ =

8
<
:

c ϑ for | τ ≤ 1

c ∗
ϑ for | τ | > 1

9
=
; , {a ∗} ϑ =

8
<
:

c ∗
ϑ for | τ ≤ 1

c ϑ for | τ | > 1

9
=
;

{b} ϑ =

8
<
:

d ϑ for | τ ≤ 1

d ∗
ϑ for | τ | > 1

9
=
; , {b ∗} ϑ =

8
<
:

d ∗
ϑ for | τ ≤ 1

d ϑ for | τ | > 1

9
=
;

(55)

Using the 4 families as assigned in eq. 55 c ϑ ↔ c ∗
ϑ d ϑ ↔ d ∗

ϑ commutation rules in eqs. 55 and

54 take the form

[ c ϑ , d ϑ ] =
ˆ
c ϑ , d

∗
ϑ

˜
= 0 & c ϑ ↔ d ϑ

ˆ
c ϑ , c

∗
ϑ

˜
=

ˆ
d ϑ , d

∗
ϑ

˜
=

˛̨
1 − | τ | 2

˛̨
¶ ∀ ϑ

(56)

We first eliminate the phase induced in eq. 56 by applying the t ransformations X (± ϑ ) , X ∗ (± ϑ )

defined in eq. 50 →
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through the substitution

a → a + τ b ∗

||
a + ϑeb ∗

↔ a ∗ → a ∗ + τ ∗ b

||
a ∗ + ϑeb

−i b → − i b + ϑ a ∗

||
eb + ϑ a ∗

↔ i b ∗ → i b ∗ + ϑ a

||
eb ∗ + ϑ a

τ = i ϑ = − τ ∗ ; eb = − i b , eb ∗ = i b ∗

(57)

As a consequence the substitutions inferred from eq. 57

{a} ϑ → {a} ϑ ↔ {a ∗} ϑ → {a ∗} ϑ
{b} ϑ →

n
eb

o
ϑ
↔ {b ∗} ϑ →

n
eb ∗

o
ϑ

with
n

eb
o
ϑ

= − i {b} ϑ ↔
n

eb ∗
o
ϑ

= i {b ∗} ϑ ; τ = i ϑ

(58)

→
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render real the so phase-transformed relations in eq. 52 a

a → {a} ϑ = a + τ b ∗ ↔ a ∗ → {a ∗} ϑ = a ∗ + τ ∗ b

b → {b } ϑ = b + τ a ∗ ↔ b ∗ → {b ∗} ϑ = b ∗ + τ ∗ a

↓

a → {a} ϑ = a + ϑeb ∗ ↔ a ∗ → {a ∗} ϑ = a ∗ + ϑeb

eb →
n

eb
o
ϑ

= eb + ϑ a ∗ ↔ eb ∗ →
n

eb ∗
o
ϑ

= eb ∗ + ϑ a
n

eb
o
ϑ

= − i {b} ϑ ↔
n

eb ∗
o
ϑ

= i {b ∗} ϑ ; τ = i ϑ = − τ ∗

(59)

→
a

This amounts to a phase transformation as defined in eq. 24 .
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The associations in eq. 55 are adapted accordingly

{a} ϑ =

8
<
:

c ϑ for | τ ≤ 1

c ∗
ϑ for | τ | > 1

9
=
; , {a ∗} ϑ =

8
<
:

c ∗
ϑ for | τ ≤ 1

c ϑ for | τ | > 1

9
=
;

{b} ϑ =

8
<
:

d ϑ for | τ ≤ 1

d ∗
ϑ for | τ | > 1

9
=
; , {b ∗} ϑ =

8
<
:

d ∗
ϑ for | τ ≤ 1

d ϑ for | τ | > 1

9
=
;

↓
n

eb
o
ϑ

=

8
<
:

ed ϑ for | τ ≤ 1

ed ∗
ϑ for | τ | > 1

9
=
; ,

n
eb ∗

o
ϑ

=

8
<
:

ed ∗
ϑ for | τ ≤ 1

ed ϑ for | τ | > 1

9
=
;

(60)

→
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Eq. 56 then becomes

h
c ϑ , ed ϑ

i
=

h
c ϑ , ed ∗

ϑ

i
= 0 & c ϑ ↔ ed ϑ

ˆ
c ϑ , c

∗
ϑ

˜
=

h
ed ϑ , ed ∗

ϑ

i
=

˛̨
1 − ϑ 2

˛̨
¶ ∀ ϑ

with

c ϑ =

8
<
:

a + ϑeb ∗ for 0 ≤ | ϑ | ≤ 1

a ∗ + ϑeb for | ϑ | > 1

ed ϑ =

8
<
:

eb + ϑ a ∗ for 0 ≤ | ϑ | ≤ 1

eb ∗ + ϑ a for | ϑ | > 1

9
>>>>>>>=
>>>>>>>;

; & c ϑ → c ∗
ϑ , ed ϑ → ed ∗

ϑ

(61)

Finally – in this section – we can rescale the inhomogeneous c ommutation rules in eq. 61 →
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to conventional ’scale’ ( = 1 ) but only for | ϑ | 6= 1

| ϑ | 6= 1 :

0
@ C ϑ

eD ϑ

1
A =

1

˛̨
1 − ϑ 2

˛̨ 1

2

0
@ c ϑ

ed ϑ

1
A ∀ ϑ except | ϑ | = 1

with

C ϑ =

8
>>>>>>>><
>>>>>>>>:

1

˛̨
1 − ϑ 2

˛̨ 1

2

a +
ϑ

˛̨
1 − ϑ 2

˛̨ 1

2

eb ∗ for 0 ≤ | ϑ | < 1

1

˛̨
1 − ϑ 2

˛̨ 1

2

a ∗ +
ϑ

˛̨
1 − ϑ 2

˛̨ 1

2

eb for | ϑ | > 1

eD ϑ =

8
>>>>>>>><
>>>>>>>>:

1

˛̨
1 − ϑ 2

˛̨ 1

2

eb +
ϑ

˛̨
1 − ϑ 2

˛̨ 1

2

a ∗ for 0 ≤ | ϑ | < 1

1

˛̨
1 − ϑ 2

˛̨ 1

2

eb ∗ +
ϑ

˛̨
1 − ϑ 2

˛̨ 1

2

a for | ϑ | > 1

9
>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

(62)
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A parametric representations of the coefficients in eq. 62 is , separately for the two ranges of | ϑ |
1

˛̨
1 − ϑ 2

˛̨ 1

2

=

8
<
:

cosh Ξ for | ϑ | < 1

sinh Ξ for | ϑ | > 1

ϑ

˛̨
1 − ϑ 2

˛̨ 1

2

=

8
<
:

sinh Ξ for | ϑ | < 1

sign ( ϑ ) cosh Ξ for | ϑ | > 1

(63)

The conventional form for the bosonic Bogoliubov transform ation is the one corresponding to

| ϑ | < 1 .

Let me remark , that neither the real form nor the conventinal normalization ( = 1 ) are representing the

full structure associated with one bosonic pair of oscillators .

Epilogue

The embedding of chiral symmetry depends in a nontrivial way on the strength of the gauge field

strength pair- Bose condensate as does the excitation of binary and higher g auge boson

compounds ( ’glueballs’ ) and the phase structure of QCD .

There is some way to go. I hope to come back to this theme soon.

— Thank you —
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osc-1c Appendix 1 : the heat kernel , Schr ödinger kernel for imaginary τ

Eq. 41 is solved from the Fourier-Laplace transform

u → u , · · ·

H( τ ; u ) =

Z
d E

1

4 π 2
d 2 p F (E ; p ) e i p u − E t

`
E − 1

4
u 2

´
F = 0 → F = δ

`
E − 1

4
u 2

´

H( τ ; u ) =
1

4 π 2

Z
d 2 p exp

h
− τ

4
p 2 + i p u

i

=
1

4 π 2 τ

Z
d 2 P exp

h
− 1

4
P 2 + i P U

i

P =
√
τ p ; U = 1√

τ
u ; − 1

4
P 2 + i P U = −

`
1
2
P − i U

´
− U 2

(64)

→
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Substituting 1
2
Π = 1

2
P − i U we obtain

H( τ ; u ) =
K

4 π 2 τ

exp

2
64 −

u 2

τ

3
75

K =

Z
d 2 Π e − 1

4
Π 2

= 4 π →

H( τ ; u ) =
1

π τ

exp

2
64 −

u 2

τ

3
75 (

√
)

(65)
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osc-1c Appendix 2 : the heat kernel convolution ( eq. 44 )

The heat kernel convolution ( Schr ödinger kernel for imaginary τ ) in eq. 44 becomes using the

substitutions

σ = τ −1 ;
√

1 + σ T = S

I =
1

π ( 1 + τ )

Z
d 2 S exp

2
64 − σ Z 2 + 2

σ

√
1 + σ

Z S − S 2

3
75

=
1

π ( 1 + τ )

Z
d 2 S exp

2
666666664

−

0
B@ σ −

σ 2

1 + σ

1
CA Z 2

−

0
B@ S −

σ

√
1 + σ

Z

1
CA

2

3
777777775

=
1

1 + τ

exp

2
64 −

Z 2

1 + τ

3
75

(66)
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[6n-1963] W. Pauli, ’Relativit ätstheorie’, Paolo Boringhieri ed. , Torino , 1963 .

– p. 48



rmain-2

References
[7n-1975] H. Fritzsch, M. Gell-Mann and P. Minkowski , ’Vect or - like weak currents and new elementary

fermions’ , Phys.Lett.B59 (1975) 256 .

[8n-1976] H. Fritzsch and P. Minkowski, ’Vector - like weak c urrents, massive neutrinos, and neutrino

beam oscillations’ , Phys.Lett.B62 (1976) 72 .

[9n-2005] P. Minkowski, ’Neutrino oscillations: a histori cal overview and its projection’, Contributed to

11th International Workshop on Neutrino Telescopes, Venic e, Italy, 22-25 Feb 2005, *Venice 2005,

Neutrino telescopes* 7-27, hep-ph/0505049,

extended version in venice30.pdf (unpublished) .

[10n-2008] C. Giunti, ’Neutrino Flavor States and the Quant um Theory of Neutrino Oscillations’,

DFTT-2-2008, Jan 2008. 16pp., talk given at 11th Mexican Wor kshop on Particles and Fields 2007,

Tuxtla Gutierrez, Mexico, 7-12 Nov 2007, AIP Conf.Proc.102 6 (2008) 3-19, arXiv:0801.0653 [hep-ph] .

[11n-2008] R. Horvat, P. Minkowski and J. Trampetic, ’Dark c onsequences from light neutrino

condensations’, Sep 2008. 5pp., Phys.Lett.B671 (2009) 51- 54, arXiv:0809.0582 [hep-ph] .

– p. 49



rmain-3

References
[1o-2006] P. Minkowski, lecture notes 2005/2006, Ausgew ählte Kapitel aus der Teilchenphysik
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a1

1-a Abelian constant field-strengths configurations

In view of the phase structure analysis of QCD , in the neigbou rhood of vanishing chemical potentials,

we begin with generic thermal quantities appropriate for th is limit

extensive potentials S = s V ; Φ = p β V ; E = ̺ e V

1 intensive independent variable T = β −1

S : entropy ; Φ : Gibbs potential ; E : energy ; V : spatial volume

p : pressure

(67)

The equations of state coalesce for zero chemical potential s to the form

T s = ̺ e + p ; s = ∂ T p

( s , p , ̺ e ) ( T )
(68)

With the substitution T = T ∗ e τ eq. 68 becomes

d / d τ = . , τ = log ( T / T ∗ ) →

ṗ = ̺ e + p
(69)

→
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In eq. 69 – T ∗ denotes an a priory arbitrary characteristic energy scale o f QCD .

The functional simplicity of the single thermal quantity – t he pressure as a function of one variable,

T ( or τ ), is in contrast to all well known systems forming the phenomenological base of thermodynamics.

It is obviously quite demanding to adapt the nontrivial ther mal behaviour characterizing QCD in the

envisaged limit of vanishing chemical potentials to this ki nematical simplicity.

As a consequence the derivation of the eventually multiple p hase structure is, whence guided by

thermodynamic considerations alone, simply impossible.

To illustrate the above, I quote a recent paper [1-2008] not r elated to the vanishing chemical potential

region directly : ”The extrapolation of the instanton-indu ced crossover deduced here to lower baryon

density is a nontrivial question, which we cannot address wi thin our framework. ...”

Yet things become – at least appear to become – perfectly clear fr om a review paper by Urs Heller

[2-2006], where the complete phase structure at zero chemic al potentials is detailed, as shown in figure 1

below →
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Fig 1 : from ref. [2-2006] ←→
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For quark masses with ratios near the characteristic values for the three light flavor of quarks

m u : m d : m s ∼ 3 : 5 : 100

bm = 1
2

(m u + m d ) : m s = 1 : 25
(70)

Lattice simulations of thermal QCD indicate the existence o f a unique phase [2-2006] for vanishing

chemical potentials.

This is contrary to the conjectured analogy of ’color superfl uidity’ arising from the condensates

pertaining to the ( T = 0 ) ground state, as discussed in ref. [3 -1981] . The approximate calculation of the

pressure for a noninteracting ensemble of hadron resonance s and noninteracting quarks and gluons

confirmed this conjecture, yet could not reproduce the super fluidity associated second order transition

with respect to energy density, as discussed in ref. [4-2001 ] .

The expected absence of latent heat in the phase transition s hall be further discussed. Its corresponding

(maximally-) second order nature is illustrated in an exten sion to the energy density in units of T 4 as

calculated in ref. [5-2007] by the MILC collaboration in Fig . 2 below →

– p. 55



a5

Fig 2 : p / T 4 ; ε / T 4 from ref. [5-2007] and to guide the eye

a second order phase transition with respect to energy densi ty superimposed. ←→

Several comments are required as to what is indicated by ’2nd order’ in Fig. 2 :

1) In no way I mean to imply any phenomenological consequence or evidence from the calculated

curve ε / T 4 for a second order phase transition.

2) The existence of specifically this second order with respe ct to ε transition is not derived from first

principles, but by analogy with the phenomena of supercondu ctivity and/or superfluidity and the

condensation of pairs of quanta , fermionic- as well as boson ic pairs in the ground state.
→
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2) (continued) The condensate composite, local operators a re

1
4
F A
µν F

µν A ( x ) ;
P

c q
a
c q

a
c ( x ) for a = u , d , s

c = 1, 2, 3 : color triplet ; A = 1, · · · , 8 : color octet
(71)

The operators in eq. 71 are understood to be (re-)normalized in a renormalization group invariant

way.

3) While we give an argument for zero latent heat of the phase t ransition below, the analytic form of the

singularity at T = T c may occur for higher than first derivative of the energy densi ty, or be in a

more subtle form except for vanishing latent heat.

In fact the bridge between local field dynamics and global the rmal parameters, as messengers of

phase transitions and microscopic dynamics has evolved awa y from the initially prevailing hope

of a resolution of basic problems [6-1973] .

As a consequence of points 1-3 discussed above I am induced to redefine the phase transition pertaining

to superconductivity/superfluidity like ’pairing’ as well as ’tripling’ , ’quadrupling’ · · · of color octet

bosonic as well as color triplet quark and antitriplet antiq uark modes [7-1988] as ’second’ order with

respect to energy density, which just shall mean any order in cluding infinite one except first order with

respect to the same quantity. →

– p. 57



a6a

Fig 2a : ε / T 4 from ref. [5-2007] and with slope break opposite to Fig. 2

a second order phase transition with respect to energy densi ty superimposed. ←→
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Here a distant yet related phase structure of He4 atoms serve s as illustration [8-1993] . The phase related

to ’color superfluidity’ is superfluid He4 , with phase bounda ries as shown in ref. [8-1993] and in Fig. 3

below

Fig 3 : The phase diagram of He4 and the trajectory of the quenc h

in the proposed experiment , from ref. [8-1993] . ←→
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The QCD systems with µ u,d,s (···) = 0 and 0 ≤ m u,d,s (···) ≤ ∞ with both limits for the quark

masses : 0 , ∞ included and with condensate operators given in eq. 71 and thermal equ ation of state in

eqs. 67 , 68 are very different also from any mixture of superfl uid He4 and He3 .

Yet despite the essential role of chemical potentials – asso ciated with conservation of baryonic number –

played for the low temperature phases of He3&4 [9-1937] , cer tain analogies exist. In particular

condensation of single , double , multiple products of atom- related fields – even multiples for fermions – ,

leading to perfect superfluid behaviour have something in co mmon with the fully relativistic counterparts

of QCD-phases ( also and in particular for vanishing chemica l potentials ) .

It was L. D. Landau [10-1941] , [11-1998] , [12-1961] , [13-19 5(6)7] who pioneered the theoretical derivation

of phases of both Bose- and Fermi liquids .

Bardeen, Cooper and Schrieffer [14-195(6)7] introduced dy namical pairing of conduction electron-related

fields ( Cooper pairs ) in their original theory of supercondu ctivity, while the general transformations of

creation and annihilation operators pertinent to either fe rmions or bosons are due to N. N. Bogoliubov

[15-1947] and carry his name . It is interesting to remark her e that bosonic pairing condensation is today

readily observable [16-2002] . ←→
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1-a1 Classical gauge boson modes (in QCD) in path integral re presentations

obstructing the gauge invariant nature of associated boson ’pair’ condensation

Within QCD , assuming completely unbroken local gauge invar iance , the most direct way to assess

bosonic multiple mode condensation follows the short dista nce expansion of pairs of gauge invariant

operators , for which the most convenient set is formed by chi ral q q currents . The simplest case arises

for currents with perturbatively vanishing anomalous dime nsions, and in order to simplify flavor

dependence to restrict ourselves to the vectorial quark num ber current with a projection on

N fl ( e.g. 3 ) according to their masses

T

(Π)

˘
j µ A ( x + 1

2
z) j ν B ( x − 1

2
z)

¯
∼

z → 0

P
O C

T (Π)
µ ν A B O ( z )O ( x )

8
<
:

j µ A

j ν B

9
=
; → J µ =

P Nfl

f

P
c : q fc γ µ q

f
c :

(72)

In eq. 72 A , B label color : c , flavor : f , and chiral projections 1
2

( ¶ ± γ 5 ) respectively , whereas

T (Π) denote the time ordered and simple product of the two current s respectively . The : : signs

indicate that some normal ordering is necessary to remove lo cal singularities of simple products of

operators . →
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This brings eq. 72 to the form

T

(Π)

˘
J µ ( x + 1

2
z ) J ν ( x − 1

2
z )

¯
∼

z → 0

P
O C

T (Π)
µ ν O ( z )O ( x )(73)

The local gauge invariant operators O in eqs. 72 , 73 can be ordered according their twist ( tw ) , and

treating separately the special case of the unit operator O = ¶

tw = mass dimension − spin :

8
<
:

0 for O = ¶

≥ 2 for genuinely local operators in QCD
(74)

Since we will need some subtleties inherent to the short dist ance expansion , a standard within the

perturbative treatment of ultraviolet stable ( asymptotic ally free ) QCD [17-197(3)4] some results are

collected in Appendix 2 .
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b1 - The genus of the Einstein tensor E αβ = R αβ − 1
2
g αβ R

Here I follow the conventions used mainly by mathematicians , in the definition of the Riemann- , Ricci-

and Einstein tensors as obtained from a minimal, metric pres erving connection, as restricted to

D P = 1 + 3 dimensions

`
R µ

ν

´
̺ τ

= ( ∂ ̺ Γ τ − ∂ τ Γ ̺ + Γ ̺ Γ τ − Γ τ Γ ̺ ) µ ν

`
Γ µ

ν

´
τ

: matrix valued (GL ( 4 , R ) ) connection ; minimal here −→
`

Γ µ
ν

´
τ

= g µσ Γ σ ; ντ ; Γ σ ; ντ = 1
2

( ∂ ν g στ + ∂ τ g σν − ∂ σ g ντ )

and conversely ∂ ν g στ = Γ σ ; ντ + Γ τ ; σν

(75)

In eq. 75 g σ τ denotes the metric, for which a signature ambiguity is subje ct to another convention, for

which I use, departing from the most common one in the mathema tical literature

sign g = ( + , − , − , − ) → {+ } ; g = g {+ }

with g { − } ≡ − g {+ }
(76)

Next we construct the Ricci tensor , which does not depend on t he signature(s) { ± } →
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R ντ =
`
R ̺

ν

´
̺ τ

= ( ∂ ̺ Γ τ − ∂ τ Γ ̺ + Γ ̺ Γ τ − Γ τ Γ ̺ ) ̺ ν

= g ̺µ ( ∂ ̺ Γ µ ; ντ − ∂ τ Γ ̺ ; µν ) + O
`

Γ 2
´(77)

For the signature discussion it is sufficient to use – for clas sical field configurations – Riemann normal

coordinates adapted to the argument of the Ricci tensor , whi ch amounts to neglect the O
`

Γ 2
´

terms and substitute the flat space metric g ̺µ → η ̺µ = diag ( 1,−1,−1,−1 ) in the

expression for the Ricci tensor in eq. 77

R ντ = ∂ µ Γ µ ; ντ − ∂ τ η ̺µ Γ ̺ ; µν ; η ̺µ ∂ ̺µ = ∂ µ

= 1
2

2
64

( ∂ ν G τ + ∂ τ G ν − � g ντ ) +

( ∂ τ G ν − ∂ τ G ν − ∂ ν ∂ τ G )

3
75

G ν = ∂ µ g µν , G = η µ̺ g ̺µ , � = ∂ 2
t − ∆ , ∆ =

P 3
i=1 ∂

2
i

(78)

Collecting terms we obtain along the curvature scalar R = η ντ R ντ ; R {+ } = −R { − }

R ντ = 1
2

(−� g ντ − ∂ ν ∂ τ G + ∂ ν G τ + ∂ τ G ν )

R = −�G + ∂ ̺ G ̺

(79)

→
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The Einstein tensor becomes

E ντ = R ντ − 1
2
η ντ R

= 1
2

(−� g ντ + ( η ντ �G − ∂ ν ∂ τ G ) + ∂ ν G τ + ∂ τ G ν − η ντ ∂ ̺ G ̺ )

G ν = ∂ µ g µν , G = η µ̺ g ̺µ

(80)

In eq. 80 we can substitute in all second derivatives the devi ations of the metric tensor from its flat form,

the expression becoming approximate if used for all x

g µν = η µν + h µν −→

2E ντ ∼

2
64
−�h ντ + ( η ντ �h − ∂ ν ∂ τ h ) +

+ ∂ ν ∂ ̺ h ̺τ + ∂ τ ∂ ̺ h ̺ν − η ντ ∂ ̺ ∂ σ h ̺σ

3
75

h = η ̺σ h ̺σ

(81)

The further substitution reduces the 6 terms on the right han d side of eq. 81

h ̺σ = f ̺σ − 1
2
η ̺σ f ; f ̺σ = h ̺σ − 1

2
η ̺σ h ; h = − f(82) →
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2E ντ ∼
h
−� f ντ + ∂ ν ∂ ̺ f ̺τ + ∂ τ ∂ ̺ f ̺ν − η ντ ∂ ̺ ∂ σ f ̺σ

i
(83)

The genus of the Einstein tensor in the title of this section d enotes the sign γ = ± in the equation

E ντ = γ K ϑ µν ; γ = ± , K > 0(84)

which in the Newtonian limit goes over in the Poisson equatio n for the gravitational potential in our

{+ } convention

Eq. 79 becomes in the static case and keeping the velocity of l ight general ( c )

R 00 ∼ 1
2

∆ h 00 ∼ γ K 1
2
ϑ 00 ; ϑ µµ ∼ ϑ 00 ; h 00 → 2 ϕ / c 2

∆ ϕ ∼ 1
2
K c 4 ρm = 4 π G N ρm →

8
<
:

γ = + 1

K = 8 π G N / c 4

(85)

In eq. 85 ϕ denotes the gravitational potential , ̺m the mass density and G N Newtons constant.
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z1 - The fibred torus as a rectangular lattice in D P → D E dimensions and gauge potentials

Gauge potentials are related to a local enlargement
of a fixed gauge group

G

G is extended into a collection of local
gauge group actions

{G } = {G }M
with respect to the D dimensional base-manifold M

(86)

In conjunction with the notion of flavor and the exclusion from our discussion of gravitational

interactions the three quantities G , {G }M , M in eq. 86 are initially characterized as follows

M

The dimension D decomposes into

D = D P + d ; D P = ( 1 + 3 ) ↔ D E = ( 0 + 4 )(87)

where d denote a form of compactified dimensions , which hithe rto have not been experimentally

resolved , while to start with D P = ( 1 + 3 ) denotes fourdimensional physical time-space ,

supporting in appropriate coordinates x = ( t , ~x ) an unbroken rigid Poincar é invariance

under the linear substitutions
→
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M = M D = D P + d (continued)

X = ( x µ ; ξ r ) ∈ M D ;

8
>><
>>:

x =
`
x 0 , x 1 , x 2 , x 3

´
∈ M D P

ξ =
`
ξ 1 , · · · , ξ d

´
∈ M d

˛̨
compactified

~x =
`
x 1 , x 2 , x 3

´
∈ R 3

action of Poincar é group : ( Λ , a ) ∈ P ; P = L©< Tr

x → Λ x + a ; Λ ∈ L , a ∈ Tr = Tr D P

(88)

In eq. 88 two additional symbols appear, denoting ( rigid ) gr oups

L : Lorentz group

Tr : Translation group

)
in D P = 1 + 3 dimensions(89)

whereas ©< stands for semidirect product.

M E the Euclidean version M

In many field theory applications it is assumed that as a conse quence of locality it is legitimate to

transform M → M E by a complex substitution involving only the time variable x 0

→
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M = M D = D P + d (continued)

x 0 = i τ ; τ : real(90)

The Poincar é group then becomes the Euclidean motion group and the Loren tz group is replaced

by the orthogonal rotation group in D P → D E dimensions. We shall not distinguish here

physical and Euclidean space-time explicitely, unless thi s becomes essential.
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A1 Appendix 1 - Nonabelian local gauge invariance

Let me proceed along the path outlined in ref. [A11-2008] .

So we consider the adjoint real, unitary i.e. orthogonal representation Ad ( g ) of a local, compact, (semi-)

simple gauge group, for the case of QCD the gauge group is SU3 c, and the associated antihermitian, real

representation of its Lie-algebra ad ( L )

α, β, · · · = 1 , · · · , dim (G ) ; G = SU3 c → dim (G ) = 8

ad κ ≡ ( ad κ ) σ̺ = f σκ̺ ; κ, σ, ̺ = 1, · · · , dim (G ) = 8

f σκ̺ = f [σκ̺] : totally antisymmetric, real structure coefficients of L

(91)

Hence the 8 real antisymmetric, i.e. antihermitian matrices ad κ = ad ( L κ ) as defined in eq. 91 form a

basis of the Lie-algebra of G, generated by the associated el ements L κ, forming together with real

coefficients ω κ the full linear space of Lie (G )

ad κ ↔ L κ ; L = L ( ω ) ≡ ω κ L κ

ˆ
L α , L β

˜
= L α L β − L β L α = f α β γ L γ

(92)

Eqs. 91 and 92 contain two very nontrivial consequences, whi ch may – incorrectly – appear obvious →
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1) structure constants can be chosen constant : f αβ γ independent of group coordinates

2) structure constants can be chosen totally antisymmetric .

On continuous transformation groups

As an entry point I quote the lecture notes edited in the CERN Y ellow report series from lectures given by

Giulio Racah in Princeton 1951 [A12-1951-1961] . From this r eference for the sake of historical

correctness the following literature shall be cited [A13-1 893] - [A17-1933].

The base space B shall be a manifold with (local) coordinates x , y , · · · chosen eventually with

enumerating index sets from the end of the alphabet, whereas the group space G be equally a manifold

with coordinates a , b , · · · chosen likewise from its beginning.

The action of the group transformations on B becomes

T a x = y = y ( x ; a ) ; y j = y j ( x 1 , · · · x B ; a 1 , · · · , a G )

B = dim ( B ) ; G = dim G ; j = 1 , · · · , B
(93)

with the transformation-(group property)

T a T b x = T a . b x → y ( y ( x ; b ) ; a ) = y ( x ; a . b )

a . b → c = c ( a , b ) ; c ν = c ν ( a 1 , · · · a G ; b 1 , · · · , b G )
(94)

→
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The set of base space transformations { T a | ∀ a } shall be truly (or essentially) dependent on the set of

group coordinates { a } , which translates into the condition

C1 : if y ( x ; a ) = y ( x ; b ) ∀ x → a = b(95)

A second condition to be valid for transformation group as we ll as group concerns the unique inverse to

any given group element a as well as to its representation T a

C2 :

a ↔ a −1 and T a ↔ T a −1 = ( T a ) −1 −→
8
<
:

c ( a ; a −1 )

= c ( a −1 ; a )

9
=
; = e and

8
<
:

T a T a −1 x

= T a −1 T a x

9
=
; = T e x = x ( ∀ x )

(96)

The associated unit elements e → T e (
.
= ¶ ) defined in eq. 96 have the property from eq. 94

e . a = a . e = a ↔ T a T e = T e T a = T a ( ∀ a )(97)

It is no loss of generality to assign the neutral element e the coordinates in G

e =
`
e 1 , · · · , e G

´
; e ν = 0 , ν = 1 , · · · , G(98)

→
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Infinitesimal increments and their transport –

from the ’right’ and from the ’left’

Lets first consider the group element around a given a ( in G )

b = a + da = a . ( de+ e ) → de = a −1 . b = e + a −1 . da(99)

Eq. 93 implies

y ( x ; a + da ) = y ( y ( x ; de ) ; a )

y ( x ; de ) = y ( x ; e ) + v (α) de
α = x + v (α) de

α

v j
(α)

( x ) = ∂ b α

`
y j ( x ; b )

´ ˛̨
b=0

(100)

In eq. 100 v (α) ( x ) ; α = 1 , · · · , G represent G vectorfields on B – with a priory unspecified rank,

except for condition C1 – and (local) tangent-space coordin ates

h
v (α) =

“
v 1

(α)
, · · · , v G

(α)

” i
( x ) → v j

(α)
( x ) = ∂ b α

`
y j ( x ; b )

´ ˛̨
b=0

(101)

Differentiating the first relation in eq. 100 we obtain

∂ c ν

`
y k ( x ; c )

´ ˛̨
c=a

da ν =
`
∂ x j

`
y k ( x ; a )

´ ´
v j

(α)
( x ) de α

for a + da = c ( a ; de ) here de from the ’right’ →
(102)
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Next we transpose de in eq. 99 to de
′

from the ’left’

b = a + da = a . ( de+ e ) → de = a −1 . b = e + a −1 . da −→

b = a + da =
“
de

′

+ e
”
. a → de

′

= b . a −1 = e + da . a −1

de
′

= a . de . a −1

(103)

Eq. 100 implies

y ( x ; a + da ) = y
“
y ( x ; a ) ; de

′
”

= y
“
x ; c ( de

′

; a )
”

(104)

Lets – going step by step – substitute

c ( de
′

; a ) = a + f (α) ( a ) de
′ α

h
f (α) =

“
f 1

(α)
, · · · f G

(α)

” i
( a ) → f ν

(α)
( a ) = ∂ b α c ν ( b ; a ) | b=0

(105)

It shall here be just mentioned as an exercise to clarify , why the left transformations on B :

{ T a | ∪ a } transform the same way as the left or right transformations on G : { L a | ∪ a } or

{D a | ∪ a }

L a b = a . b ; D a b = b . a −1(106)
→
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For simplicity lets choose besides the transformation grou p { T a | ∪ a } on B the left transformation

group on G : { L a | ∪ a } , as defined in eq. 106 .

Then the tangent vector fields associated with { T a | ∪ a } of motions on B : v (α) ( x ) defined in

eqs. 100 and 101 are associated with { L a | ∪ a } inducing motions on G which generate the tangent

vector fields f (α) ( b ) as defined in eq. 105 proper care beeing taken to rename the dif ferentiating

variable in eq. 105 b → b
′

to distinguish it from the general coordinate – b above on G . Eq. 103

becomes

v k
(α)
{ y ( x ; a ) } de ′ α = v k

(β)
( x ) f β

(α)
( a ) de α

= ∂ c ν

`
y k ( x ; c )

´ ˛̨
c=a

da ν

for a + da = c ( de
′

; a ) ≡ c ( a ; de ) ; de
′

= a . de . a −1

(107)

The vector fields in eq. 108 below are called Killing fields ( on B and ’left’ on G respectively ) [A18-1890] .h
v (α =

“
v 1

(α)
, · · · , v B

(α)

” i
( x ) ; on B

h
f (α) =

“
f 1

(α)
, · · · , f G

(α)

” i
( a ) ; on G

v j
(α)

( x ) = ∂ b α

`
y j ( x ; b )

´ ˛̨
b=0

; f ν
(α)

( a ) = ∂ b α c ν ( b ; a ) | b=0

(108)

→
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On the notion of motion

Fig A11 : Aristarchos from Samos, ∼ 310-230 BC ←→
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The exponential mapping

We first look at a one parameter family of group transformatio ns, depending on a ’time’ parameter τ ,

which traces out a path on B as well as on G with the properties corresponding to the Killing (left) vec tor

fields outlined in eq. 108

0 ≤ τ ≤ t : b → b ( τ )

b ( τ + dτ ) = b ( τ ) + de
′ α f ν

(α)
( b ) with de

′ α = dτ ω α

ω α = de
′ α / d τ independent of τ

(109)

Thus to the tangent vector in the neighbourhood of e ∈ G

ω = ( ω 1 , · · · , ω G )(110)

corresponds the infinitesimal ’left’ transformation const ructed from { L a | ∪ a }

ω → bω =

L
e + de

′ − L e

d τ

; de
′

= d τ ω ; L e
.
= ¶ G

bω b = ω α f (α) ( b ) ;
h
f (α) =

“
f ν

(α)

” i
( b )

(111)

→
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So from the second relation in eq. 109 we obtain the system of G linear differential equations ( first on G )

ḃ ν = ω α f ν
(α)

( b ( τ ) ) ; ˙ =

d

d τ

(112)

and choosing the initial condition(s)

b 0 = b ( τ = 0 ) = e → f ν
(α)

( e ) = δ ν
(α)

(113)

ω is – using eq. 109 – correctly identified with the initial dire ction in the tangent space at e , or –

associating τ with a time – with the initial velocity .

With the initial conditions as specified in eq. 113 we thus find a one-parametric, abelian subgroup of G ,

as a solution to the so completed set of first order differential equations ( eq. 112 )

b ( τ 2 ) . b ( τ 1 ) = b ( τ 1 + τ 2 ) ; b = b ( τ ; ω ) ; ḃ ( 0 ; ω ) = ω

for : 0 ≤ τ 1 , τ 2 , τ 1 + τ 2 ≤ tmax
(114)

The range of regularity and uniqueness of the above system of differential equations depends on the

range of differentiability of the Killing fields f (α) ( g ) [ on G ] . →

– p. 78



A1-10

Pro- or in-jecting the exponential mapping from G to B
We now consider the trajectory in B associated with b ( τ ) as constructed in eq. 112 - 114

b ( τ ) → y ( τ ) = y ( x 0 ; b ( τ ) ) ; y ( τ = 0 ) = x 0(115)

Next we recast eq. 100 to the ’left’ transformation on G

y ( x 0 ; b + d b ) = y
n
y ( x 0 ; b ) ; e + de

′
o

= y ( x 0 ; b ) + v (α) ( y ) de
′ α

= y ( x 0 ; b ) + v (α) ( x 0 ) de α

y = y ( x 0 ; b ) ; de = b −1 . de
′

b

(116)

Using eq. 107 , we infer the differential equation on B
ẏ = v (α) ( y ( τ ) ) ω α

v (α) { y ( x 0 ; b ( τ ) ) } = v (β) ( x 0 ) ef β
(α)

( b ( τ ) ) ; ef 6= f
(117)

but because of the interplay between ’left’ and ’right’ tran sformations on G it remains to establish, there,

a relation between de and de
′

de = b −1 . de
′

. b(118)

→
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The adjoint linear representation of G from de = b −1 . de
′

. b

Eq. 118 paves the way from the operator version of the Lie gene rators of – to be definite – ’left’

transformations on G according to eq. 111 extended below

ω → bω =

L
e + de

′ − L e

d τ

; de
′

= d τ ω ; L e
.
= ¶ G

bω b = ω α f (α) ( b ) ;
h
f (α) =

“
f ν

(α)

” i
( b ) −→

ω = ω α I (α)

(119)

In eq. 119 the underlined quantities ω ; I (α) denote linear (derivative) operators on function space(s)

over G

{Φ | Φ = Φ [ b ] , b ∈ G } →

g ( bω ) ∼ e + de
′

; g −1 ( bω ) ∼ e − de
′

: de
′

= dτ ω

dτ ∆ ( ω ) Φ [ b ] ∼ Φ
h “

e − de
′

”
. b

i
− Φ [ b ] ∼ − dτ ω α f ν

(α)
( b ) ∂ b ν Φ [ b ]

−→ ∆ ( ω ) ≡ ω = ω α I (α) = − ω α f ν
(α)

( b ) ∂ b ν

(120) →
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In eq. 120 operators acting on the function space {Φ | Φ = Φ [ b ] , b ∈ G } are underlined except

for the partial derivative operators ∂ b ν to maintain clarity. We shall use (covariant) vector notati on for

partial derivatives

∇ b = ( ∂ b 1 , · · · , ∂ b G ) →

ω = − ω α
`
f (α) ( b )∇ b

´ ˛̨
G

(121)

From ω | G to ω | B inducing

»
I (α)

˛̨
˛
G
↔ I (α)

˛̨
˛
B

–

Here we recall eq. 107 and define in clear association of G → B the function space(s) , Killing fields

and partial derivatives on B
{Φ | Φ = Φ [ b ] , b ∈ G } → {Ψ | Ψ = Ψ [ y ] , y ∈ B }
“
f 1

(α)
, · · · , f G

(α)

”
[ b ] →

“
v 1

(α)
, · · · , v B

(α)

”
[ y ]

∇ b = ( ∂ b 1 , · · · , ∂ b G ) → ∇ y =
“
∂ y 1 , · · · , ∂ y B

”
→

ω = − ω α
`
f (α) ( b )∇ b

´ ˛̨
G → ω = − ω α

`
v (α) ( y )∇ y

´ ˛̨
B

I (α) = − f (α) ( b )∇ b

˛̨
˛
G

→ I (α) = − v (α) ( y )∇ y

˛̨
˛
B

(122)

→
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It is interesting to note here, that the original idea of Soph us Lie [A13-1893] was in the reverse

association ( from B to G ) than displayed in eq. 122 , more in line with Élie Cartan [A14-1894] .

Now we return to the abelian one parameter subrgoups constru cted from the differential equations eqs.

109 - 112 on G and eqs. 115 - 117 on B , collected in abbreviation below

ḃ ν = ω α f ν
(α)

( b ( τ ) ) ; ḃ ν ( τ = 0 ) = ω ν on G

ẏ
̺

= ω α v ̺
(α)

( y ( τ ) ) ; ẏ
̺

( τ = 0 ) = ω α v ̺
(α)

( x 0 ) on B

y ̺ ( τ = 0 ) = x ̺0

(123)

Example : B = R 3 , G = SU2 ≡ S 3

Let the coordinates on B = R 3 be denoted by ~y , ~x 0 , · · · , following the notation used in the

general case in eqs. 122 - 123 . Not knowing yet which group G will emerge, we take the rotation group

acting on R 3 infinitesimally

ω | B = − ( ~ω ∧ ~y ) ~∇ y = − ω α ε αβ γ y β ∂ y γ = − ~ω
“
~y ∧ ~∇ y

”
(124)

In eq. 124 the vector-product of two three vectors ~x , ~y is denoted ~x ∧ ~y . Further ε is the totally

antisymmetric three tensor on R 3 implying α, β, γ = 1, 2, 3 . →

– p. 82



A1-14

Hence we learn from well known kinematical formulae that the re must be a continuous group G of

dimension three, and consequently that there are three infin itesimal generators

~I =
“
I (1) , I (2) , I (3)

” ˛̨
˛
B

with

~I = − ~y ∧ ~∇ y

˛̨
˛
B

(125)

The formulae derived from eqs. 124 - 125 are in their classica l phase space variant usually embedded

topically in a treatise on mechanics of rigid bodies [A19-18 97] and thus not immediately identified with

the

search for a continuous group.

Here let us give the three components of ~I
˛̨
˛
B

, dropping for clarity the label | B

I (1) = −
“
y 2 ∂ y 3 − y 3 ∂ y 2

”
1 23

I (2) = −
“
y 3 ∂ y 1 − y 1 ∂ y 3

”
2 31

I (3) = −
“
y 1 ∂ y 2 − y 2 ∂ y 1

”
3 12

(126)

It follows – and shall be given as an exercise – that the Lie-al gebra commutators induced on B are of

the form
ˆ
I (α) , I (β)

˜
= ε αβγ I (γ) ; ε 123 = 1 ; α, β, γ = 1, 2, 3(127)
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Back to the adjoint representation and its relation to secon d order derivatives along the abelian one

parameter subgroups on B and G
We take up the consequences of eqs. 115 - 118 and distinguish t wo one-parameter abelian subgroubs

using the following notation both on B and G
on G : a ( τ ) ; b ( ϑ ) g : general coordinate

on B : T a ( τ ) ; T b ( ϑ ) x : general coordinate
(128)

Next we represent the tranformation group acting on G by left-multiplication in accordance with

eqs. 119 - 121 with respect to G and eqs. 122 - 123 with respect to (also) B , defining for one

one-parameter subgroup the (operator-) better transforma tion-valued quantities ω | G to ω | B
inducing

»
I (α)

˛̨
˛
G
↔ I (α)

˛̨
˛
B

–

o ( τ ; ω ) → exp
“
τ ω ν I (ν)

” ˛̨
˛
G (B)

−→

a ( τ ; α ) → exp
“
τ α ν I (ν)

” ˛̨
˛
G (B)

b ( ϑ ; β ) → exp
“
ϑ β ν I (ν)

” ˛̨
˛
G (B)

(129)

→
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Next we come back to the active form of left-multiplication a s defined in eq. 119

g → L a ( g ) = a . g ;
8
<
:

a → a ( τ ; α )

b → b ( ϑ ; α )

9
=
;

(130)

The group representation takes the form

g → g 1 = L a 1
( g ) → g 2 = L a 2

( g 1 ) −→

L a 2
( L a 1

( g ) ) = a 2 . ( a 1 . g ) = ( a 2 . a 1 ) . g

L a 2
L a 1

= L a 2 . a 1

(131)

The one parameter abelian subgoups { a ( τ ; α ) } and { b ( ϑ ; β ) } on G
We consider the unique one parameter abelian subgroup assoc iated with the pair { b } ; { a }

d ( ϑ ; γ ) = a ( τ ; α ) . b ( ϑ ; β ) . a −1 ( τ ; α ) −→

d ( ϑ 1 ; γ ) d ( ϑ 2 ; γ ) = d ( ϑ 1 + ϑ 2 ; γ )
(132)

It is easier to represent the conjugation ( of b by a ) defined in eq. 132 through the associated

operators than through the active transforming relations . →
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This is achieved by the substitutions

a , b , c → a , b , c(133)

For infinitesimal ϑ → dϑ eq. 133 takes the associated form , remembering that e = ¶ | G
a ( τ ; α )

“
¶ + dϑ β

”
a −1 ( τ ; α ) ≃ ¶ + dϑ γ

a = exp
“
τ α ν I (ν)

” ˛̨
˛
G

; · · ·

γ = γ ν I (ν)

˛̨
˛
G

and γ → β , α

(134)

In eq. 134 the quantities α , β , γ stand for tangent vectors on/of G

α =
`
α 1 , · · · α G

´
and α → β , γ(135)

It follows from the structure of eqs. 130 - 135 through several steps

γ ν = F ν ( β ; a ) → F ν ( β ; a ) = [Ad ( a ) ] νµ β µ

a = a ( τ = 1 ; α ) ; ν , µ = 1 , · · · G
(136)

Furthermore choosing a as an endpoint of a one parameter abel ian subgroup of G is not essential in the

matrix association , rewriting eq. 136 in matrix form →
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γ = F ( β ; a ) = Ad ( a ) β −→

and for a = a 2 . a 1 : Ad ( a 2 . a 1 ) = Ad ( a 2 )Ad ( a 1 )
(137)

The set of G × G matrices

{Ad ( a ) | a ∈ G ) }(138)

with the group relation defined in eq. 137 is called the adjoin t representation of/over G .

A1-ad From adjoint representation to its infinitesimal form ; Ad ( a ) | G → ad ( α ) | T
In A1-ad we have defined ( a new symbol ) T denoting the tangent space at the unit element of G

a = exp
“
τ α ν I (ν)

” ˛̨
˛
G
−→

a ∈ G → α ∈ T = T | e
(139)

Now we expand eq. 134 with respect to τ → dτ and dϑ

a ( τ ; α )
“
¶ + dϑ β

”
a −1 ( τ ; α ) ≃ ¶ + dϑ γ −→

( ¶ + dτ α )
“
¶ + dϑ β

”
( ¶ − dτ α ) ≃ ¶ + dϑ dτ δ

δ = δ
“
α , β

”
=

h
α , β

i
≡ α β − β α

(140)

→
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Eq. 140 can be cast to the form using eq. 136

(Ad ( e + dτ α ) − ¶ ) σ ̺ β
̺ = dτ α κ

`
ad (κ)

´ σ
̺
β ̺ →

α κ
`
ad (κ)

´ σ
̺
β ̺ I (σ) =

h
α ν I (ν) , β

µ I (µ)

i
∀ α , β →

`
ad (κ)

´ σ
̺
I (σ) =

h
I (κ) , I (̺)

i
(141)

We thus cannot use the apperantly ’evident’ definition in eq. 91 , but rather seth
I (κ) , I (̺)

i
= f σ κ ̺ I (σ) ; f σ κ ̺ = − f σ ̺ κ −→

`
ad (κ)

´ σ
̺
≡ f σ κ ̺

(142)

While the antisymmetric nature of the structure constants f σ κ ̺ with respect to the two lower case

compenents κ ̺ is straightforward, the overall threefold antisymmetric f orm only obtains for compact

groups and only after suitable coordinates on Lie G are introduced.

We first note the quadratic covariant tangent space metric wi th respect to the adjoint

{Ad ( a ) | a ∈ G } representation

η γ κ = − tr ad (γ) ad (κ) = − f ̺ γ σ f
σ
κ ̺ = η κ γ(143)

→
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We note here the counting of continous derivatives in the tra nsformation group functional forms on B
and G : in order to define the action on tangent space of T G ( e ) of the adjoint representation of

Lie G as defined in eqs. 141 - 142 we need two continous derivatives and for any further power with

respect to ad (κ) ∈ Lie G , one more continous derivative beyond 2 is needed , e.g. a total of 3 in eq.

143 .

Next, continuing at third order , as defined above, we verify t he representation associated Lie algebra

commutation rules

I (̺) → ad (̺)
?−→

ˆ
ad (̺) , ad (σ)

˜
= f α ̺ σ ad (α)

(144)

To this end we use the Jacobi identity involving double commu tators
h
I (̺) ,

h
I (σ) , I (τ)

i i
+

h
I (τ) ,

h
I (̺) , I (σ)

i i
+

h
I (σ) ,

h
I (τ) , I (̺)

i i
= 0

h
I (̺) , I (α)

i
f α σ τ +

h
I (τ) , I (α)

i
f α ̺ σ +

h
I (σ) , I (α)

i
f α τ ̺ = 0

`
f ν ̺ α f

α
σ τ + f ν τ α f

α
̺ σ + f ν σ α f

α
τ ̺

´
= 0 −→

`
ad (̺)

´ ν
α

`
ad (σ)

´ α
τ
− f α ̺ σ

`
ad (α)

´ ν
τ
−

`
ad (σ)

´ ν
α

`
ad (̺)

´ α
τ

= 0

(145)

The relation in the last line of eq. 145 verifies eq. 144 . →
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A1-Ad Finite adjoint representations { Ad ( a ) | a ∈ G } leave the metric η γκ in eq. 143

invariant

Eq. 133 can be transcribed to the basis formed by the associat ion

I (ν) →
`
ad (ν)

´ λ
σ

a = exp
“
τ α ν I (ν)

” ˛̨
˛
G
→ D ( a ( τ ) ) = exp

`
τ α ν ad (ν)

´
−→

D ( a ( τ ) ) β ̺ ad (̺) D
−1( a ( τ ) ) = (D ( a ( τ ) ) σ ̺ β

̺ ad (σ) →

D ( a ( τ ) ) ad (̺) D
−1( a ( τ ) ) = (D ( a ( τ ) ) σ ̺ ad (σ)

(146)

From eq. 146 we infer

ad (λ) = D −1( a ( τ ) ) ad (̺) D ( a ( τ ) ) (D ( a ( τ ) ) ̺ λ

ad (κ) = D −1( a ( τ ) ) ad (σ) D ( a ( τ ) ) (D ( a ( τ ) ) σ κ

D ( a ( τ ) ) ≡ Ad ( a ( τ ) ) → D −→

ad (λ) ad (κ) = D −1 ad (̺) DD −1 ad (σ) D
`
D ̺

λ D
σ
κ

´
→

tr ad (λ) ad (κ) = tr ad (̺) ad (σ)

`
D ̺

λ D
σ
κ

´
−→

η λ κ = D ̺
λ ( a ( τ ) )D σ

κ ( a ( τ ) ) η ̺ σ qed

(147)
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In order to exponentiate Ad ( a ( τ ) ) = exp
`
τ α ν ad (ν)

´
as displayed in eq. 146 convergent

transformation group parametrization is needed to infinite order ( on B and G ) . This is tantamount to

demand (real) analytic properties of these transformation s .

Here we reexpand the last relation in eq. 147 , tantamount to f our continuous derivatives only

Ad ( a ( τ ) ) ∼ ¶ + dτ α ν ad (ν)

η = Ad T η Ad → 0 = ad T
(ν)

η + η ad (ν)

(148)

In eq. 148 the superfix T denotes the transposed of a given matrix.

The last relation in eq. 148 in components becomes
`
ad (ν)

´ ̺
λ
η ̺ κ + η λ ̺

`
ad (ν)

´ ̺
κ

= 0 ;
`
ad (ν)

´ ̺
κ

= f ̺ νκ −→

η κ ̺ f
̺
νλ + η λ ̺ f

̺
νκ = 0 ; η λ κ = − f ̺ λσ f σ κ̺

(149)
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A1-ENA Condition of resolvability of G characterizing essentially nonabelian continuous groups

The condition of essential nonabelian nature of the group G contains the insufficient condition that every

infinitesimal generator shall be representable also as the L ie product of two such

∀ given α = α ν ad (ν) ∃ β , γ with α = [ β , γ ](150)

The main condition however , also denoted semi-simple restr iction of G demands that G does not

contain an abelian normal subgroup A , i.e. an abelian subgroup invariant under conjugation by th e

entire group G . On Lie G an abelian normal subgroup displays the following features

Lie A : ad (a) ; (a) = 1, · · · , A

Lie G : ad (a) , ad (ν) ; (a) = 1, · · · , A ; (ν) = 1, · · · , G− A −→

f c ab = f ν ab = 0 ; f ν aµ = f ν µb = 0

(151)

The metric quantities η γ κ defined in eq. 143 thus have the following structure , upon a ch ange of

basis adapted to the separation into Lie G = Lie A ⊕ R as implied by eq. 151

η γ κ = − f ̺ γ σ f
σ
κ ̺

η a b = − f c a µ f
µ
b c = 0 ; η a ̺ = − f c a µ f

µ
̺ c = 0 ←→

det η = 0

(152)

It follows that for a semi-simple continuous group G det η 6= 0 .
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A1-Cpct The semi-simple case and eventual reduction to comp act nature of G
The invertible metric η allows to treat the scalar product within Lie G as nondegenerate .

We return to the notation for the elements of Lie G in line with those of eq. 146

a = exp
“
τ α ν I (ν)

” ˛̨
˛
G
τ → 1−→ α = α ν I (ν) ↔ α = α ν ad (ν)

`
ad (ν)

´ ̺
σ
≡ f ̺ νσ

(153)

The real, symmetric scalar product shall be denoted“
β , α

”
η

= β λ η λ κ α
κ(154)

In the semi-simple restriction there are no vanishing eigen values of η , which are all real . Hence η can

be diagonalized

η λ κ = O λν η (ν) O κ ν ; O O T = ¶ ; O : real orthogonal(155)

The eigenvalues η (ν) in eq. 154 must by no means be positive , leading to an indefinit e metric.

It is here , where the additional restriction to compact grou ps comes in, which as will be shown below,

implies , in addition to the semi-simple restriction

η (ν) =
`
e (ν)

´ 2
> 0 ; e (ν) : real ; ν = 1, · · · , G(156)

→
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As a first step we make the orthogonal substitution rendering diagonal the scalar product in eq. 154“
β , α

”
η

=
“ eβ , eα

”
eη

η λ κ = O λν η (ν) O κ ν −→ eη eλ eκ = δ eλ eκ

“
e

(eλ)

” 2

0
@ eα

eβ

1
A

eκ

= O σ eκ

0
@ α

β

1
A
σ

(157)

The orthogonal substition α σ → eα eκ in eq. 157 implies a tensor-like substitution of the structu re

constants f ̺ στ , derived next .

α = α ν ad (ν) = eα eµ fad
(fµ)

= O ν eµ α ν fad (eµ) −→

ad (ν) = O ν eσ fad (eσ) → fad (eµ) = O ν eµ ad (ν)

(158)

From eq. 158 it follows – not changing component basis

h
fad (eσ) , fad (eτ)

i
= O ν eσ O µ eτ

ˆ
ad (ν) , ad (µ)

˜
= O ν eσ O µ eτ f

̺
νµ ad (̺) =

= O ν eσ O µ eτ O ̺ eϕ f ̺ νµ fad ( eϕ) ; O ̺ eϕ ≡ O ̺ eϕ
(159)

→
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It becomes obvious how to redefine the structure constants

ef eϕ
eσeτ = O ν eσ O µ eτ O ̺ eϕ f ̺ νµ −→ ef eϕ

eσeτ = − ef eϕ
eτeσ(160)

but we should then also transform the components of the matrices starting from the original basis of`
ad (ν

´ χ
ψ

.

In order to make this explicit we rewrite eq. 159 using the val id transformation of structure constants

given in eq. 160 “ h
fad (eσ) , fad (eτ)

i ” χ

ψ
= ef eϕ

eσeτ

“
fad ( eϕ)

” χ

ψ
(161)

The choice of appropriate change of judiciuosly chosen coordinates on G relative to general such,

reconstructed from a complete set of base spaces B , each with similar associated choices of

coordinates, gives rise to the distinctive discussion of th e next subsection .

A1-IOA Inner and outer- automorphisms

In order to see the notions of automorphisms arise let me repe at the generic matrix relation in eq. 161

independent of the matrix element basis
h

fad (eσ) , fad (eτ)
i

= ef eϕ
eσeτ

fad ( eϕ)(162)

The general matrix solution to eq. 162 , given ef eϕ
eσeτ , is not unique , rather of the form →
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obtained from any singled out solution, denoted by ead (eν) by a similarity matrix- transformation, denoted

by S

fad
(eλ)

= S ead
(eλ)

S −1 ↔ ead
(eλ)

= S −1 fad
(eλ)

S(163)

We write eq. 163 in components
“

ead
(eλ)

” eµ

eν
=

`
S −1

´ eµχ
S ψeν

“
fad

(eλ)

” χ

ψ

` ˆ ead (eσ) , ead (eτ)
˜ ´ eµ

eν = ef e̺
eσeτ

`
S −1

´ eµχ
S ψ eν

“
fad e̺

” χ

ψ

= ef e̺
eσeτ

` ead e̺
´ eµ

eν

(164)

In order to be covariantly in line with the transformation of the structure constants f → ef in eq. 160

we choose

S = O , S −1 = O T

in components : S ψeν = O ψeν ,
`
S −1

´ eµχ
= O χeµ ≡ O χeµ

(165)

To clarify and establish the similarity transformation S = O in eqs. 163 - 165 as outer automorphism

relative to the inner ones, generated by the finite adjoint re presentation { Ad ( a ) | a ∈ G } , we go

back to subsection A1-Ad . →
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We recapitulate the steps from ad (ν) → fad (eµ) → ead
(eλ)

according to eqs. 146 , 153 → 158→
163 - 165.

Motto : General coordinates are a blessing and an obstacle re ciprocally conseqential

I) the starting point ; general coordinates ( eq. 146 )

I (ν) →
`
ad (ν)

´ λ
σ

a = exp
“
τ α ν I (ν)

” ˛̨
˛
G
→ Ad ( a ( τ ) ) = exp

`
τ α ν ad (ν)

´
−→

Ad ( a ( τ ) ) β ̺ ad (̺) Ad
−1( a ( τ ) ) = (Ad ( a ( τ ) ) σ ̺ β

̺ ad (σ) →

Ad ( a ( τ ) ) ad (̺) Ad
−1( a ( τ ) ) = (Ad ( a ( τ ) ) σ ̺ ad (σ)

(166)

Further we retain from eqs. 142 and 144h
I (κ) , I (̺)

i
= f σ κ ̺ I (σ) ; f σ κ ̺ = − f σ ̺ κ −→

ˆ
ad (κ) , ad (̺)

˜
= f σ κ ̺ ad (σ) ;

`
ad (κ)

´ σ
̺
≡ f σ κ ̺

(167)

and the invariant scalar product from eqs. 143 , 147 and 155 - 1 56

η γ κ = − tr ad (γ) ad (κ) = − f ̺ γ σ f
σ
κ ̺ = η κ γ

η = Ad T ( a ( τ ) ) η Ad ( a ( τ ) ) ; ∀ a ( τ )

η = O η diag O
T ;

`
η diag

´
ν µ

= δ ν µ
`
e (ν)

´ 2

(168)
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II) from η → η diag ≡ eη ( eqs. 157 and 168 )

The transformation to orthogonal , not yet orthonormal , axes of Lie G , begins with eqs. 157 - 161

in subsection A1-Cpct , leaving the matrix element basis ( ) σ τ fixed in the transformation

( eq. 158 )

α = α ν I (ν) = eα ν eI (eν)“
α = α ν ad (ν) = eα eµ fad

(fµ)
= O ν eµ α ν fad (eµ)

” σ

τ
−→

0
@ I (ν)

ad (ν)

1
A = O ν eσ

0
@

eI (eσ)

fad (eσ)

1
A ↔

0
@

eI (eµ)

fad (eµ)

1
A = O ν eµ

0
@ I (ν)

ad (ν)

1
A

(169)

The transformations displayed in eq. 169 are incomplete but aim at bringing about a basis change

in the induced invariant tangent space metric ( eq. 157 )

→
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II) continued · · · “
β , α

”
η

=
“ eβ , eα

”
eη

=
P

(eκ) e
2
(eκ)

eβ eκ eα eκ

η λ κ = O λν η (ν) O κ ν −→ eη eλ eκ = δ eλ eκ

“
e

(eλ)

” 2

0
@ eα

eβ

1
A

eκ

= O σ eκ

0
@ α

β

1
A
σ

(170)

We define here the inner automorphisms beeing generated unde r step I) from the original

structure constants and original {Ad ( a ) | a ∈ G } generated from the Lie algebra

α ν ad (ν) |
`
ad (ν)

´ σ
τ

= f σ ντ to mean the association

Ad ( b ) = exp β = exp
`
β λ ad (λ)

´
, Ad ( a ) = exp α = exp

`
α λ ad (λ)

´

a : Ad ( b ) → Ad ( a )Ad ( b )Ad −1 ( a )

η = Ad T ( a ) η Ad ( a ) ; ∀ a ∈ G

with η λ κ = − f ̺ λ σ f σ κ ̺ ; f ̺ λ σ =
`
ad (λ)

´ ̺
σ

(171)
→

– p. 99



A1-31

II) continued · · ·
Remark concerning definitions of inner- and outer automorph isms

The mathematical realm of automorphisms , inner and outer , i s very widespread. While in eq. 171

a well defined group automorphisms is qualified as ’inner’ , th is may not correspond to strict

mathematical usage of the term in other contexts. I refer to r efs. [A110-2000] for a general

discussion.

It follows thus from eq. 171 that any coordinate transformat ion of the type sought in this step,

which changes the tangent space metric ( eq. 170 )

η λ κ = O λν η (ν) O κ ν −→ eη eλ eκ = δ eλ eκ

“
e

(eλ)

” 2
(172)

involves an outer automorphism of Lie G , which does not appear yet in this step (II) .

Here as a consequence of the transformations in eqs. 157 - 159 , 169 - 170 the structure constants

are transformed as follows ( eq. 160 ) , repeated below

ef eϕ
eσeτ = O ν eσ O µ eτ O ̺ eϕ f ̺ νµ −→ ef eϕ

eσeτ = − ef eϕ
eτeσ(173)

This is as far as step II carries. But without changing accord ingly the matrix elements σ
τ ,

frozen up to this point, of the matrices as given in eq. 169
“

fad (eµ)

” σ

τ
= O ν eµ

`
ad (ν)

´ σ
τ

(174)

→
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II) end

the automorphism completing relation fad ↔ ef does not hold.
“

fad (eµ)

” σ

τ
6= ef eσ

eµeτ(175)

III) the outer automorphism from fad (eµ) to ead (eµ) = S −1 fad (eµ) S ; S = O

In this step we complete the full , outer- automorphism as giv en in eq. 163 , generating the

associated diagonalized invariant scalar product ( eqs. 157 and 168 ) .

Comparing the full 3-tensor transformation of the structur e constants f σ µτ in eq. 173 with the

partial substitution for the base generators of Lie G :
`
ad (µ)

´ σ
τ

in eq. 174 the origin of the

external automorphism ( eqs. 164 - 165 ) necessary to complete the covariantly consistent

change of variables follows

` ead (eµ)

´ eσ
eτ =

`
S −1

´ eσ
σ

′

“
fad (eµ)

” σ
′

τ
′
S τ

′

eτ

S τ
′

eτ = O
τ

′ eτ ,
`
S −1

´ eσ
σ

′ = O
σ

′ eσ −→
` ead (eµ)

´ eσ
eτ = ef eσ

eµeτ

(176)

This ends the r ésum é of the orthogonalizing and not yet normalizing coordinate transformations

on G and Lie G .
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Establishing coordinates rendering the metric ortho normal

We take up the orthogonalizing coordinate transformations on G reassigning symbols to the orthogonal

form of the metric , also calles Killing-form [A111-1962] , a chieved in the previous subsections .

We shall establish the following notation using as suffixes

⊥ : for orthogonal , not normalized

⊢ : for orthonormal
(177)

In the following the general semisimple compact group G = G 1 ⊗ G 2 ⊗ · · · ⊗ G l shall be

restricted to one simple such.

Thus we perform the orthogonal substitutions, starting from eq. 176
` ead (eµ)

´ eσ
eτ : ead → ad ⊥ ,

`
eµ

´ eσ
eτ → ( µ ) σ τ

ef eσ
eµeτ → ( f ⊥ ) σ µτ

(178)

Going step by step beginning with eq. 176 , the latter takes th e form
`

ad ⊥ (µ)

´ σ
τ

= ( f ⊥ ) σ µτ(179)

The next equation undergoing the above substitutions →
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is eq. 172 , which becomes

eη eλ eκ → η ⊥ λ κ = δ λ κ
`
e (λ)

´ 2(180)

The next quantity requiring an appropriate substitution is eI (eσ) in eq. 169

eI (eσ) → I ⊥ (σ) ;
h

I ⊥ (σ) , I ⊥ (τ)

i
= ( f ⊥ ) ̺ στ I ⊥ (̺)(181)

This affects the operator and adjoint representation versi ons in eq. 169

α = α ν I (ν) : α ⊥ = α ⊥
ν I ⊥ (ν)

α = α ν ad (ν) : α ⊥ = α ⊥
ν ad ⊥ (ν)

ˆ
ad ⊥ (σ) , ad ⊥ (τ)

˜
= ( f ⊥ ) ̺ στ ad ⊥ (̺)

(182)

A subtlety shall be emphasized here and arises from eqs. 153 a nd 169 : in order to achieve compatibility

with the full transformation
“
ad

(µ
′
)

” σ
′

τ
′
→

`
ad ⊥ (µ)

´ σ
τ

a coordinate transformation as

implementing the outer automorphism must be performed on G , which is not a group similarity

transformation in order to bring about the full substitutio n eI (eν) : I ⊥ (ν) in eq. 181 .

Next we turn to eq. 166 →
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where the finite adjoint representation matrices Ad ( a ( τ ) ) undergo the outer automorphism

associated substitution

a : a ⊥ = exp
“
τ α ν

⊥ I ⊥ (ν)

” ˛̨
˛
G
≡ exp ( τ α⊥ )

a : a ⊥ = exp
`
τ α ν

⊥ ad ⊥ (ν)

´ ˛̨
G ≡ exp ( τ α⊥ )

Ad : Ad⊥ → Ad ⊥ ( a ⊥ ) = exp ( τ α⊥ )

(183)

whereupon eq. 166 is transformed into

Ad ⊥ ( a ⊥ ( τ ) ) β ⊥ Ad −1
⊥ ( a ⊥ ( τ ) ) = ( Ad ⊥ ( a ⊥ ( τ ) ) ) σ ̺ β

̺
⊥ ad ⊥ (σ)

→ Ad ⊥ ( a ⊥ ( τ ) ) ad ⊥ (̺) Ad −1
⊥ ( a ⊥ ( τ ) ) = ( Ad ⊥ ( a ⊥ ( τ ) ) ) σ ̺ ad ⊥ (σ)

(184)

Finally we assign the variable substitution to eq. 157“
β , α

”
η

:
“

β ⊥ , α ⊥

”
η ⊥

= β ⊥
ν η ⊥ ν µ α ⊥

µ

η : η ⊥ ; η ⊥ ν µ = δ ν µ
`
e (ν)

´ 2
(185)

with the identifications →
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transforming the relations in eq. 168

η ⊥ ν µ = − tr ad ⊥ (ν) ad ⊥ (µ) = − ( f ⊥ ) ̺ ντ ( f ⊥ ) τ µ̺ −→

D ( a ) ≡ Ad ⊥ ( a ⊥ ( τ ) ) as a shorthand

η ⊥ = D T ( a ) η ⊥ D ( a ) ; ∀ a

(186)

At this stage we have to go back to restructure eq. 155 having s plit off the active transformations of the

(tangent space-) metric η → η ⊥ into an orthoganal outer automorphism and a remainder to be

considered below .

The orthogonal substitution as already given in eq. 155 usin g our present substituded variables becomes

η = O η ⊥ O T ; O O T = ¶(187)

leading to the next eventually final step discussed in the next , new subsection .

A1-O ⊢ Achieving the ortho normal metric

The overall multiple of the unit matrix defining the orthonor mal one , denoted η ⊢ in the following

η ⊢ = C ¶ ; C = k 2 , k > 0(188)

is a matter of convention and shall be denoted by C > 0 as in eq. 188 in this subsection . →

– p. 105



A1-37

The last relation in eq. 187 thus transforms into

C η ⊥ = S η ⊢ S T ; S = S T = S diag
`
e (1) , · · · , e (G)

´

S µ m = δ µ m e (µ) →
“
S

′

= S −1
”
m µ

= δm µ
`
e (µ)

´ −1
(189)

In the following we use for all tensor- quantities in the orthonormal basis latin indices , disting uishing

them from the orthogonal one , where they are in greek .

Hence displaying all indices eq. 189 becomes

C η ⊥ ν µ = S ν n η ⊢ n m S µ m →

η ⊢ n m = C S
′

n ν η ⊥ ν µ S
′

m µ

(190)

The last relation in eq. 186 becomes

S 2 = D T ( a ) S 2 D ( a ) −→

¶ = S
′

D T ( a ) S S D ( a ) S
′

=
“
S D ( a ) S

′
” T “

S D ( a ) S
′

”
= ( D ⊢ ( a ) ) T D ⊢ ( a )

D ⊢ ( a ) = S D ( a ) S
′

= S D ( a ) S −1

(191)

→
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The third relation in eq. 191 rewritten below

¶ = ( D ⊢ ( a ) ) T D ⊢ ( a )

D ⊢ ( a ) = S D ( a ) S −1
(192)

shows that modulo the similarity transformation , as repres ented by the last relation in eq. 192 , the so

defined set formed by the union of G × G matrices
˘ S

a D ⊢ ( a )
¯

is equivalent to the

adjoint Ad ( G ) representation of G , which in turn is a sub-representation of the vector representation

of SO G , which I denote V ( SO G ) in the following . The latter is formed by the union of all

orthogonal G × G matrices with determinant 1 .

Ad ( G ) =
˘ S

a D ⊢ ( a )
¯

; V ( SO G ) =
˘ S

O | O O T = ¶ , det O = 1
¯

−→ Ad ( G ) ⊆ V ( SO G )
(193)

Since V ( SO G ) forms a compact space , so does Ad ( G ) . This proves the consistency of the

nonnegative nature of the metric η , defined in eq. 143 , 147 and 168 , with the required restriction that

G be semisimple and compact .

It is worth noting here that , always restricting to simple compact groups , the equal or equivalent sign in

last relation in eq. 193 holds →
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precisely for the smallest simple, compact group

Ad ( G ) ≃ V ( SO G ) −→ G = 3 ; G = SU 2(194)

We proceed to adapt coordinates and Ad , ad representations to the similarity transformation as

defined in eq. 192 . This requires further adapted notations t o which task we turn below.

To this end we refer to the form of the diagonal matrix S
`
e (1) , · · · , e (G)

´
in eq. 189 and expand

eq. 192

¶ = ( D ⊢ ( a ) ) T D ⊢ ( a )

D ⊢ ( a ) = S D ( a ) S −1 ; D ( a ) ≡ Ad ⊥ ( a ⊥ ( τ ) )
(195)

Next we descend from the general Ad to the logaritmic ad level ( eq. 183 )

D ⊢ ( a ) = exp ( τ eα ⊥ ) : Ad ⊥ ( a ⊥ ) = exp ( τ α⊥ )

eα ⊥ = S α⊥ S −1 −→ fad ⊥ (ν) = S ad ⊥ (ν) S
−1

(196)

We proceed to display all components pertaining to eq. 196 introducing the shorthand notation

fad ⊥ eσ (ν) eτ := Φ eσ | ν eτ(197)

→
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The quantity Φ . in eq. 197 has the following structure , using eq. 185

Φ eσ | ν eτ = − Φ eτ | ν eσ

Φ eσ | ν eτ = S eσ χ S
−1
ψ eτ

`
ad ⊥ (ν)

´ χ
ψ

− tr fad ⊥ (ν)
fad ⊥ (µ) = − tr ad ⊥ (ν) ad ⊥ (µ) = η ⊥ ν µ = δ ν µ

`
e (ν)

´ 2

(198)

The traces in eq. 198 are independent of the similarity trans formation defined in eq. 196 . Hence it follows

− tr fad ⊥ (ν)
fad ⊥ (µ) =

P
eσ eτ

`
Φ eσ | ν eτ Φ eσ | µ eτ

´
=

`
S 2

´
ν µ

(199)

As in the reduction to an orthogonal basis beginning with sub section A1-Cpct has shown, the remaining

component , here (ν) in the quantity fad ⊥ (ν) has to be transformed as well . Thus a new quantity

arises of the form

fad e⊥ ( e̺) = S −1
ν e̺

fad ⊥ (ν) −→

X eσ | e̺ eτ := S −1
ν e̺ Φ eσ | ν eτ = S eσ χ S

−1
ν e̺ S

−1
ψ eτ

`
ad ⊥ (ν)

´ χ
ψ

(200)

Combining the antisymmetry relations in eqs. 198 and 179 the two such relations follow

X eσ | e̺ eτ = −X eτ | e̺ eσ = −X eσ | eτ e̺(201)

→
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and by eq. 201 that the quantity

X eσ | e̺ eτ = K ( f ⊢ ) eσ e̺ eτ ; with K > 0 : a suitable normalization constant(202)

is totally antisymmetric with respect to the three indices eσ e̺ eτ .

Next we determine the so induced metric using eq. 200

− tr fad e⊥ ( e̺)
fad e⊥ ( e̺ ′

)
= − S −1

ν e̺ S
−1

µ e̺ ′ tr fad ⊥ (ν)
fad ⊥ (µ)

= S −1
ν e̺ S

−1

µ e̺ ′

`
S 2

´
ν µ

−→

= δ e̺ e̺ ′

“
fad e⊥ ( e̺)

”
eσ eτ

= X eσ | e̺ eτ := K
`

ad ⊢ ( e̺)
´

eσ eτ →
`

ad ⊢ ( e̺)
´

eσ eτ = ( f ⊢ ) eσ e̺ eτ = K −1 X eσ | e̺ eτ

(203)

The orthonormal metric thus becomes

η ⊢ e̺ e̺ ′ = − tr ad ⊢ ( e̺) ad ⊢ ( e̺ ′
)

=
P

eσ eτ f ⊢ eσ e̺ eτ f ⊢ eσ e̺ ′ eτ

= C δ e̺ e̺ ′ ; C = k 2 > 0
(204)

→
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Combining eqs. 203 and 204 determines the normalization rel ations

K = k −1 → C = k 2 = K −2(205)

This ends the derivation part of Appendix 1 . It remains to str eamline notation to be used in further

studies and to add concuding comments in the last subsection below .

A1-A Adapting notation for further use and addenda

Most applications depending on the structure constants of simple , compact Lie algebras imply as a

starting point the orthonormal basis and a definite normaliz ation (C ) as in subsection A1-O .

For this reason we wish to simplify the notation reached in su bsection A1-O . It is instructive to compare

my derivations here with the associated ones in ref. [A12-19 51-1961] the notes of lectures by Giulio

Racah . The material covered here in Appendix 1 forms in ref. [ A12-1951-1961]

’Lecture 1. General notions on continuous groups’ divided i nto 3 subsections and 15 pages . These

contain 27 numbered and 53 in total formulae . In comparison A ppendix 1 contains 19 subsections, 42

pages and 115 formulae , up to this point .

Thus we assign the following new symbols , first to those in eqs. 203 and 204
`

ad ⊢ ( e̺)
´

eσ eτ = ( f ⊢ ) eσ e̺ eτ −→ f [ s r t ] =
`
ad (r)

´
s t

η ⊢ e̺ e̺ ′ −→ η
r r

′ = −tr ad (r) ad (r
′
)

= f [ s t r ] f
h
s t r

′
i

(206) →
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Next we turn to eqs. 195 and 196 . We define and assign

α ⊢ = ( α ⊢ ) e̺ ad ⊢ ( e̺) −→ α = α r ad (r)

D ⊢ ( a ⊢ ) = Ad ⊢ ( a ⊢ ) −→ Ad ( a ) = exp ( τ α )
(207)

Next we cast eq. 193 into the form , using the substitutions in eq. 207

Ad ( G ) =
˘ S

a Ad ( a )
¯

; V ( SO G ) =
˘ S

O | O O T = ¶ , det O = 1
¯

−→ Ad ( G ) ⊆ V ( SO G )
(208)

In analagy with Ad ( G ) we define the (adjoint) Lie algebra representation

ad ( G ) =
˘ S

α α = α r ad (r)

¯

ˆ
ad (r) , ad (s)

˜
= f [ r s t ] ad (t)

(209)

Now we turn to the normalization constant C , defined in eq. 188 . To this end we define first the (second)

Casimir imvariant for the adjoint representation and compa re with eq. 206

−
“ P

r

`
ad (r)

´ 2
”
s t

=
P

r u f [ s r u ] f [ t r u ] = C 2 ( G ) δ s t

−→ C = C 2 ( G )
(210)

→
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Eq. 210 – for a simple compact group G – represents a definition identity in the orthonormal basis , by no

means an absolute magnitude determination.

The latter follows just for the smallest G = SU2 from the conventions

G = SU2 : r, s, t = 1, 2, 3 −→
˛̨
f [ r s t ]

˛̨
= 1

−→ C = C 2 ( SU2 ) = 2
(211)

This is in line with the normalization convention for the ang ular momentum operators with respect to the

origin in an R 3 configuration space

J r = ε rst x s
1
i
∂ x ; t ; ε rst ≡ f [ r s t ] ; ~J = ( J 1 , J 2 , J 3 )

“
~J

” 2
˛̨
˛̨
ad

= J ( J + 1 ) | J=1 = 2
(212)

It is instructive to illustrate here for G = SU2 and the angular momentum operators defined in eq.

212 , that no absolute normalization for the constant C ( eq. 1 88 derives from the expansion in

orthonormal coordinates of G around the origin , chosen as the unit element .

To this end we express I 3 = i J 3 as derivative operator in cylindrical coordinates

x 1 = x = x ⊥ cos ϕ , x 2 = y = x ⊥ sin ϕ , x 3 = z

x ⊥ =
p

x 2 + y 2 , ϕ = arctan ( y / x )
(213)

→
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It follows from eq. 213

I 3 = ∂ / ∂ ϕ(214)

We consider a rescaling transformation of the orthonormal structure constants

λ real :

8
>>>><
>>>>:

f [ r s t ] → f λ
[ r s t ]

= λ f [ r s t ]

C → C λ = λ 2 C

I 3 → I λ3 = λ I 3

(215)

Hence the rescaling as defined in eq. 215 is equivalent to a res caling of the polar angle ϕ

I λ3 = ∂ / ∂ ϕ λ ; ϕ λ = ϕ / λ(216)

Obviously the rescaling ϕ → ϕ / λ changes the period of cylindrical functions , but an expansi on

around a given angle , ϕ 0 = 0 say , without all order summation cannot reveal this topolog ical

property.

We shall abide by the conventional normalization of G = SU2 – i.e. λ → 1 – which can be

extended consistently to all simple , compact groups , excep t if arbitrary rescaling factors are explicitly

introduced . →
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A1-D Remarks on irreducible general representations , root s and weights

Here it is not intended to give an exhaustive treatment of the topics in the subsection title above

[A112-2002] , [A113-1986] . Only the alignment of unitary ir reducible linear representations with the

conventionally normalized orthonormal basis of the adjoin t representation is discussed.

To this end we start with the adjoint Lie algebra , in orthonor mal convention and reproduce eq. 209 below

ad ( G ) =
˘ S

α α = α r ad (r)

¯

ˆ
ad (r) , ad (s)

˜
= f [ r s t ] ad (t)

(217)

For an arbitrary , finite dimensional reducible or irreducible and unitary representation of G → D ( G )

and its ’infinitesimal’ antiunitary Lie algebra representi ng matrices d ( G ) , aligned with the orthonormal

basis quantities Ad ( G ) and ad ( G ) in eqs. 208 and 217 respectively , we use the notation

d ( G ) =
˘ S

α d ( α ) = α r d (r)

¯

ˆ
d (r) , d (s)

˜
= f [ r s t ] d (t) ;

`
d (r)

´ †
= − d (r)

D ( G ) =
˘ S

α D ( a ) = exp ( τ d ( α ) )
¯

; D ( a )D † ( a ) = ¶

also : d (r) = 1
i
δ (r) ;

`
δ (r)

´ †
= δ (r) −→

ˆ
δ (r) , δ (s)

˜
= i f [ r s t ] δ (t)

(218)

→
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In parallel with the transformations to the otrhonormal bas is in eqs. 206 - 207 – restricted to the adjoint

representation , we also reassign upon appropriate coordinate transformation the adapted differential

operators bringing those defined in eq. 183 for the orthogona l basis to accord with the orthonormal basis

a : a ⊢ = exp
“
τ α ν

⊢ I ⊢ (ν)

” ˛̨
˛
G
≡ exp ( τ α ⊢ ) −→ exp ( τ α ) ≡ U (τ α)

a : a ⊢ = exp
`
τ α ν

⊢ ad ⊢ (ν)

´ ˛̨
G ≡ exp ( τ α ⊢ ) −→ exp ( τ α )

Ad : Ad ⊢ → Ad ⊢ ( a ⊢ ) = exp ( τ α ⊢ ) −→ Ad ( a )

(219)
In order to sharpen the perspective lets repeat eq. 207 below

ad ⊢ ( e̺) = ( α ⊢ ) e̺ ad ⊢ ( e̺) −→ α = α r ad (r)

D ⊢ ( a ⊢ ) = Ad ⊢ ( a ⊢ ) −→ Ad ( a ) = exp ( τ α )
(220)

Thus the first relation in eq. 219 has to be extended to the diff erential (Killing-) operators pertinent to the

orthonormal coordinates on G
ad ⊢ ( e̺) = α ⊢ | G = ( α ⊢ ) e̺ I ⊢ (ν)

˛̨
˛
G
−→ α = α r I (r)

˛̨
˛
G

−→
h
I (r) , I (s)

i
= f [ r s t ] I (t)

˛̨
˛
G

(221)

It is of historical interest, that the so induced unitary fini te transformation operators on G compact ,

endowed with a group invariant metric and also measure , gene rate an exhaustive and complete set of

finite dimensional unitary representations of G [A114-1933] , [A115-1927] , [A116-1953] . →

– p. 116



A1-48

Hermitian versus antihermitian convention

In the following we will suppress the label | G on the quantities U ( τ α ) and I (r) defined in eqs.

219 - 221 , turning to these operator quantities next .

U ( τ α ) = exp ( τ α ) ; α = α r I (r) = 1
i
α r J (r) ; I (r) ≡ 1

i
J (r)

I †
(r)

= − I (r) ↔ J †
(r)

= J (r)h
I (r) , I (s)

i
= f [ r s t ] I (t) ↔

h
J (r) , J (s)

i
= i f [ r s t ] J (t)

(222)

The conventions more adapted to applications of quantum mec hanics , and thus preferred in physics,

are to consistently use self adjoint operators , as generati ng through the exponential imaginary mapping

unitary ones, whereas in the mathematical literature the an tihermitian convention prevails. While the two

are equivalent often misunderstandings result, which shou ld be avoided. A good traceback of the

appropriate powers of i can be found in ref. [A117-1963] .

Following – for a while – the selfadjoint operator basis J (r) we can construct an invariant nonnegative

operator ( on G ) , quadratic with respect to derivatives

H (2) =
P

s J
2
(s) ;

h
J (r) , H (2)

i
= 0(223)

It is at this point that the Killing-fields at the basis of the o perators J (r) refer here by convention to

left-multiplication on G , whereas there exist also the right-multiplication →
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Killing-fields , giving rise to a second set of right-multiplication operators J R(r)h
J R(r) , J

R
(s)

i
= i f [ r s t ] J

R
(t) ;

h
J (r) , J

R
(s)

i
= 0 , ∀ r , s(224)

fully commuting with the left-multiplication associated o perators J (t) .

Returning to left-multiplication, we can use H (2) in eq. 223 – together with the so called Cartan torus

on G – to split the eigenvalues and projectors on suitable subspa ces, which as a consequence of the

compact nature of G reveal a discrete set of eigenvalues , each with a finite multi plicity . The Cartan

torus is spanned by a maximal abelean subgroup , a sub-torus o f G of dimension r = rank of G“
H (1) , · · · , H (r)

”
↔

“
J (1) , · · · , J (r)

”

G = G − r →
“
K (1) , · · · , K (G)

”
↔

“
J (r+1) , · · · , , J G

”(225)

In fact a permutation on the indices (1) , · · · , (G) should be allowed for, before the segregation in eq.

225 into Cartan torus and its orthogonal (tangent space) com plement is performed.

This segregation gives a corresponding separation of the Li e algebra operations

α =
`
α 1 , · · · , α G

´
↔ α = h + κ

h =
`
h 1 , · · · , h r

´
↔ h = h r H (r) ; r = 1 , · · · , r

κ =
“
κ 1 , · · · , κ G

”
↔ κ = κ s K (s) ; s = 1 , · · · , G

(226)

→
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Returning to the ( left-multiplication ) commutation rules in eq. 224 we separate indices of the operators

J u along h , κ

r , r
′ · · · = 1, · · · , r ↔ h ; s , t · · · = 1, · · · , G ↔ κ(227)

Adapting to the Cartan basis the structure constants take th e form

f [ r 1 r 2 r 3 ] = 0 , f [ r 1 r 2 s ] = 0

f →

8
<
:

f [ r s 1 s 2 ]

f [ s 1 s 2 s 3 ]

; r . ∈ h , s . ∈ κ
(228)

We propose to study alongside the adjoint representation all irreducible representations of G , adapted

to the Cartan torus

representation action on action → roots / weights

J (r) ∈ h κ = κ s J (s) ∈ κ →
h
J (r) , κ

i
i f [ r s t ] κ

s J (t)

ad :
`
i ad (r)

´
s t
∈ h κ = κ s i ad (s) ∈ κ i f [ r s t ] κ

s i ad (t)

D : δ (r) ∈ h z ∈ L (D ) z σ →
`
δ (r)

´ σ
τ
z τ

(229) →
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In the row devoted to D in eq. 229 we have denoted the linear space on which the repres entation , i.e.

the set of unitary , irreducible matrices forming D acts , by L (D ) ( eq. 218 ) .

We repeat below the action of the Cartan generators for adjoi nt and general representations

ad : J (r) or i ad (r) −→ κ → i ad (r) κ

D : δ (r) −→ z → δ (r) z
`
i ad (r)

´
s t

= i f [ s r t ] ,
`
δ (r)

´ σ
τ

J †
(r)

= J (r) ,
`
i ad (r)

´ †
=

`
i ad (r)

´
,

`
δ (r)

´ †
=

`
δ (r)

´

(230)

Choosing the hermitian ( selfadjoint ) basis implies that J (r) are selfadjoint operators with discrete real

eigenvalues on a compact G , whereas the representation matrices i ad (r) , δ (r) are hermitian finite

dimensional .

We note the very different actions pertaining to the Lie alge bra generators as well as one of its

representations – the adjoint one – on one hand and the direct multiplicative action of the Lie algebra

representation- matrices δ (r) , r = 1, · · · , r on L (D ) on the other . The first kind of action is

displayed in the first two rows in eq. 229 , the second one in the last row thereof .

Had we chosen to act with the representation matrices of the C artan generators δ (r) pertaining to D
by commutation with the corresponding representation matr ices δ (s) , s = 1, · · · , G →
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κ D = κ s δ (s) ; s = 1, · · · , G

ad (D ) ↔ δ (r) :

8
<
:

κ D →
ˆ
δ (r) , κ

D ˜
= i

`
ad (r)

´
s t

κ t δ (s)

κ −→ ad (r) κ ; for any D

(231)

roots denote the collection of eigenvalues
˘
̺ =

`
̺ 1 , · · · , ̺ r

´ ¯
of ad (r) , pertaining to the

adjoint Lie algebra representation .

weights denote the collection of eigenvalues
˘
w =

`
w 1 , · · · , w r

´ ¯
of δ (r) , pertaining to the

Lie algebra representation D .

For the adjoint representation the vanishing root ̺ ≡ 0 with r fold degenracy , corresponding to the

abelean sub-torus ( eq. 228 ) , should be included .

A1-concl Concluding remarks to topical derivations in this appendix

r1) Roots and weights displayed as vectors in r euclidean dimensions and using cartesian

coordinates form a lattice , which can be generated from r base points by integer linear multiples.

In this connection the minima of absolute eigenvalues relat ive to J (r) ; r = 1, · · · , r form

also relevant invariants , in addition to the second and higher Ca simir invariants.

I show in the next subsection the roots and weights of SU3 , the latter with respect to the 3

dimensional (complex) representation D3 . Here a derivation of root and weight systems of all

simple compact groups is not undertaken . Instead I refer to r efs. [A14-1894] , [A113-1986] and

[A118-1981] . →
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r2) This appendix shall prepare the ground for a comparison o f two kinds of local gauge structures :

a) gauging orientation ↔ Riemannian metric spaces ( [A11-2008] )

b) charge-like gauging ↔ Yang-Mills- or charge-like connections

r3) While such comparison ( r2 ) is well known for classical co nnection and metric or vielbein , it is – at

least for the author – much less so for quantized dynamical fie lds including a metric , acting in

dimensions beyond time and space .

A1-SU3 Roots and simplest weights for G = SU3

Adopting the conventions of the eight Gell-Mann matrices [A 118-1964] and rescaled by 1
2

multiplicatively we renumber the generators J 1 , · · · J 8 to the numbering used here for the Cartan

torus , choosing the 3 dimensional representation D3 of SU3

conventional 1 2 3 4 5 6 7 8

here (8) (3) (1) (4) (5) (6) (7) (2)

δ (1) = 1
2
λ 3 ↔ J 3 ; eigenvalues j 3

δ (2) = 1
2
λ 8 ↔ J 8 ; eigenvalues j 8

(232)

→
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The chosen basis defines ( by convention ) the 3 representatiuon of the base-charges of u , d , s , the

diagonal elements of j 3 , j 8 respectively , ordered into three 2 vectors ( j 3 , j 8 )mm with

m = 1, 2, 3 = u, d, s , are

flavor ( j 3 , j 8 )

u ( 1
2
, 1

2
√

3
)

d (− 1
2
, 1

2
√

3
)

s ( 0 , − 1√
3

)

(233)

For the octet (adjoint) representation the flavor assignmen ts ∈ κ are

u ⊗ d ↔ π + d ⊗ u ↔ π −

u ⊗ s ↔ K + s ⊗ u ↔ K −

d ⊗ s ↔ K 0 s ⊗ d ↔ K 0

(234)

and with ( j 3 = 0 , j 8 = 0 ) :

8
><
>:

π 0 = 1√
2

“
u ⊗ u − d ⊗ d

”

η 8 = 1√
6

“
u ⊗ u + d ⊗ d − 2 s ⊗ s

”

(235) →
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The values of ( j 3 , j 8 ) for the octet representation are

flavor ( j 3 , j 8 )

π 0 , η 8 ( 0 , 0 )

π ± ± ( 1 , 0 )

K ± ±
“

1
2
,

√
3

2

”

K 0 , K
0 ±

“
− 1

2
,

√
3

2

”

(236)

The weights of the 3 and 3 representations and the roots of SU3 are shown in Fig. A11 bel ow . →
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Fig A12 : Weight diagrams of the 3 , 3 representations

and the roots of SU3 . ( i 3 , i 8 ) = 0 states not displayed .
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A2 Appendix 2 - Renormalization group equation in QCD

We take the short distance expansion for the current product as defined in eq. 73 repeated below ,

subject to the renormalization group or rescaling equation s, the latter representing exact, anomalous

Ward identities for the dilatation current [A21-1976]

T

(Π)

˘
J µ ( x + 1

2
z ) J ν ( x − 1

2
z )

¯
∼

z → 0

P
O C

T (Π)
µ ν O ( z )O ( x )(237)

In the triple association

J µ ( x 1 ) , J ν ( x 2 ) → O ( x 3 )(238)

we will assume that all three local fields are multiplicative ly – perturbatively – renormalizable for

simplicity. Mixing effects of finite groups of operators

{ ∪ O | (O 1 , · · · , O n ) }(239)

do arise and can easily be incorporated [A22-1974] .

We are mainly interested in the tw = 4 ; dim 4 operators later

{ O } 4 =
˘
ϑ µµ ,

1
4
g 2 : F µν a F

µν
a : , · · ·

¯

ϑ µν : suitable, conserved energy momentum tensor
(240)

→
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but discuss the general simply multiplicatively renormali zable case first .

In terms of unrenormalized quantities , generically denote d by the suffix (0) , and renormalization

constants including a Fermi-gauge fixing parameter η in order to controle the gauge invariant character

of the so defined operators we set

J α = ( Z J ) −1 J
(0)
α , O = ( Z O ) −1 O (0)

g = ( Z 3 ) 3/2 ( Z 1 ) −1 g (0) , η = ( Z 3 ) −1 η (0)
(241)

As renormalization conditions we use a finite dummy scale µ , as it appears also naturally in

dimensional renormalization , with respect to which unreno rmalized quantities are insensitive

d / d µ
n
g (0) , η (0) ; J

(0)
α , O (0) , · · · (0)

o
= 0(242)

For the choice of currents in eq. 237 and d = 4 scalar operators { O } in eq. 240 it follows , always

within the ( asymptotically ) perturbative logic

C
T (Π)
α β O ( z ) =

`
g α β � − ∂ α ∂ β

´
C
T (Π)
J O ( z ; µ , g , η )

with dim C
T (Π)
J O = 0 ; Z J = 1

(243)

→
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The short distance distributions C
T (Π)
J O then are of the form

C
T (Π)
J O ( z ; µ , g , η ) = ( Z J ) 2 ( Z O ) −1 bC T (Π)

J O ( z ; µ , g , η )

g = ( Z 3 ) 3/2 ( Z 1 ) −1 g (0) , η = ( Z 3 ) −1 η (0)
(244)

The µ rescaling equation now follows from eq. 242

0
@ µ ∂ µ + β ( g ) ∂ g − γm α m α ∂m α

− 2 γ 3( η ∂ η ) − γ J O

1
A C

T (Π)
J O

`
z ; µ , g , m β , η

´
= 0

8
>>>>>><
>>>>>>:

β ( g ) = − g b ( g 2 )

γm β
( g 2 )

γ J O ( g 2 , ( η ) )

γ 3 ( g 2 , η )

9
>>>>>>=
>>>>>>;

= µ d / d µ

8
>>>>>>><
>>>>>>>:

log
“

( Z 3 ) 3/2 ( Z 1 ) −1
”

Zm β

log
`
Z O / Z 2

J

´

log ( Z 3 ) 1/2

9
>>>>>>>=
>>>>>>>;

(245)

The brackets in red in eq. 245 shall indicate that upon establ ishing that { J , O } are indeed gauge

invariant operators the derivative with respect to the gaug e parameter η in the rescaling equation gives

zero and also the combined anomalous dimensions γ J O do not depend on η . For the operators in

the group of interest here ( eq. 240 ) the determination of the correct gauge invariant ones has been

derived by H. Kluberg-Stern and J. B. Zuber [A24-1975] . →
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From the partial renormalization systematics given given in eqs. 241 - 242 th e redundant scale µ

becomes an essential argument of renormalized quantities

J α : µ d / d µ ( J α ) µ = − γ J ( J α ) µ = 0

O : µ d / d µ (O ) µ = − γ O O µ

g : µ d / d µ ( g ) µ = β ( g µ )

η : µ d / d µ ( η ) µ = − γ 3 η µ

with :

8
>>><
>>>:

γ 3 = γ 3 ( g 2 , η )

γ J = 0 , Z J = 1

γ O = γ O ( g 2 , ( η ) )

(246)

Three remarks are in order :

1) Perturbative accessibility of renormalization in asymp totically free theories

While the entire renormalization procedure thus ( eq. 246 ) b ecomes within perturbative accessibility

– as explained in textbooks [A25] , [A26-1982] – the associat ed renormalization group equation

serves to restore renormalization group invariant propert ies, in particular such definitions of

operators .

2) Infrared instability

is associated with all physical scales not accessible to perturbative approximations . →
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3) Quark mass dependence

We neglect in the considerations followed here the quark mas s dependence of all Green functions

in the deep Euclidean region on quark masses , the latter also to be renormalized and thus not

renormalization group independent [A27-1975] . This is in l ine with the main short distance

contributions , which are sorting out by the twist character istic leading contributions modulo less

dominant ones modulo powers of inverse Euclidean distance . These dimensional hierarchies also

break down whence the region of perturbative accessibility is transgressed . For small quark

masses at a generic scale of ∼ 1GeV the quark mass associated mixing of operators with

different dimensions sets in in subtle ways governed by appr oximate chiral symmetry also outside

the deep Euclidean region .

→
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A2-slsc The sliding scale coupling constant

From eq. 246 the sliding scale coupling constant follows , co nsidering a variation of µ and g µ

t = log ( µ / µ ) ; ∂ t = µ d / d µ

g = g ( t , g µ ) ; generic variablei is : g
′ → x ; t → τ

∂ t g = β ( g ) ; g ( t = 0 , g µ ) = g µ

(247)

Using the generic variables x , τ the differential equation ( eq. 247 ) becomes

( d / d τ ) x = β ( x ) → d τ = d x / β ( x) →

τ 2 − τ 1 =

Z x 2

x 1

d x ( β ( x) ) −1 = F ( x 2 )− F ( x 1 )

F ( x ) =

Z x

x 0

d x
′

/ β ( x
′

) ; generic : x 0 independent of x 1 , x 2

x = x ( τ ) →

8
<
:

x 1 ( τ 1 )

x 2 ( τ 2 )

(248)

The function F ( x ) satisfies the ( generic ) equation

β ( x ) ∂ x F ( x ) = 1(249)
→
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From the generic identities a consequence follows, relevan t for the short distance limit of the rescaling

equation (eq. 245) , for the solution to the associated homog eneous partial differential equation a

( ∂ τ − β ( g ) ∂ g ) h ( τ , g ) = 0 −→

h = h ( g ( τ = t , g = g µ ) ) with g as defined in eq. 247
(250)

Leaving aside quark mass dependence for simplicity here , be aring in mind remark 3) above, we turn to

the properties of the sliding scale coupling constant , i.e. the function g = g ( t , g µ ) and the

associated differential equation defined in eq. 247 readapt ed below. The universal independence of the

sliding scale coupling constant can be maintained independ ent of quark masses .

t = log ( µ / µ ) ; ∂ t = µ d / d µ

∂ t g = β ( g ) ; g ( t = 0 , g µ ) = g µ
(251)

Thus we are to determine the function F ( x ) as defined in eq. 247 such that

t = F ( g )− F ( g ) ; g = g µ ; F ( x ) =

Z x

x 0

d y / β ( y )(252)

→
a

Note the - sign in the first line of eq. 250 .
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We have followed the concise treatment and notation of C. G. C allan [A28-1970] and K. Symanzik

[A29-1970] on whose formulation and structural discussion the modern form of the renormalization

group equation(s) relies . The two loop renormalizability o f nonabelian gauge theories is due to G. t’Hooft

[A210-1971(2)] and contain all elements which determine th e sliding scale function discussed here.

These quotations duely made including [A211-1969] , [A212- 1972] , I continue using selected changes of

variables, transforming eq. 252

s = 2 t = log
h

( µ / µ ) 2
i

κ = g 2 /
`

16 π 2
´

and κ → κ generic κ → X , Y

s = F ( κ ) − F ( κ µ ) ; κ µ = g 2
µ /

`
16 π 2

´

F (X ) =

Z X 0

X

`
d Y / Y 2

´
(B ( Y ) ) −1

β ( y ) = − y b ( y 2 ) ; B ( Y ) = b ( y 2 ) / Y ↔ Y = y 2 /
`

16 π 2
´

(253)

With the substitutions in eq. 253 we have

s = F ( κ ) − F ( κ µ ) =

Z κ µ

κ

`
d Y / Y 2

´
(B ( Y ) ) −1

B ( Y ) = b 0 + b 1 Y + b 2 Y 2 + · · ·
(254)

→
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There exist many ways to separate the limiting part κ → 0 ↔ s → +∞ of the integral in eqs. 253,

254 . We use ( two ) partial integrations

s = ( Y B ( Y ) ) −1
˛̨
˛
κ

κ µ

+

Z κ µ

κ
( d Y / Y ) ( d / d Y ) (B ( Y ) ) −1

∆ 1 s = s − ( Y B ( Y ) ) −1
˛̨
˛
κ

κ µ

; ∆ 0 B −1 = (B ( Y ) ) −1

(255)

Upon the substitution s → ∆ 1 s we obtain

∆ 1 s = ( log ( Y ) ) (− d / d Y ) (B ( Y ) ) −1
˛̨
˛
κ

κ µ

+ ∆ 2 F

∆ 2 F =

Z κ µ

κ
d Y (− log Y ) (− d / d Y ) 2 (B ( Y ) ) −1

(256)

Going step by step we evaluate first the derivatives as acting on B −1 ( Y )

(− d / d Y ) (B ( Y ) ) −1 = B
′

( Y ) / B 2 ( Y ) = ∆ 1 B −1 = −
`
B −1

´ ′

(− d / d Y ) 2 (B ( Y ) ) −1 =

„
2

“
B

′

( Y )
” 2
− B

′′

( Y )B ( Y )

«
(B ( Y ) ) −3

= ∆ 2 B −1 =
`
B −1

´ ′′

′

= d / d Y ,
′′

= ( d / d Y ) 2 , · · ·
(257) →
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Collecting the definitions in eqs. 255 - 257 we restate

n = 0 ∆ 0 B −1 = (B ( Y ) ) −1

n ≥ 1 ∆ n B −1 = (− d / d Y ) n (B ( Y ) ) −1
(258)

and

s =
ˆ `
Y −1

´
∆ 0 B −1 ( Y ) + ( log Y ) ∆ 1 B −1 ( Y )

˜ κ
κ µ

+ ∆ 2 F

∆ 2 F =

Z κ µ

κ
d Y (− log Y ) ∆ 2 B −1 ( Y )

(259)

We add two representations valid in the perturbatively acce ssible region 0 ≤ Z ≤ X = κ

`
Y −1

´
∆ 0 B −1 ( Y )

˛̨
Y = X

= X
−1

2
664

B −1 ( 0 ) +

+

Z X

0
d Z

`
−∆ 1 B −1

´
( Z )

3
775

X → κ µ

(260)

→
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Also we anchor ∆ 2F in eq. 259 at X → 0

∆ 2 F =

Z κ µ

κ
d Y (− log Y ) ∆ 2 B −1 ( Y )

= F 2 (X µ ) − F 2 (X )

F 2 (X ) =

Z X

0
d Y (− log Y ) ∆ 2 B −1 ( Y ) ;

8
<
:

X µ = κ µ

X = κ

(261)

We decompose s in eq. 259

s = Σ (X )− Σ (X µ )

Σ (X ) =
`
X −1

´
∆ 0 B −1 (X ) + ( log X ) ∆ 1 B −1 (X ) − F 2 (X )

(262)

For X → X µ we do not know the form of the functions determining Σ (X ) , in particular if we

choose the scale µ outside the region of perturbative accessibility . But for X → X we can perform

an asymptotic expansion for X → 0 , assuming a pure power expansion for the functions`
B , B −1 , · · · (X )

´
, as they appear in the asymptotic expressions for Σ (X ) as defined in

eqs. 261 - 262 .

To this end it is enough to determine →
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the power expansion of B −1 (X ) up to second order in X , to which we turn below.

B (X ) = b 0 + b 1 X + b 2 (X ) 2 + R 2 (X )

R 2 (X ) = o (X 2 ) for X → + 0
(263)

To this end it is convenient to rescale B (X )

B (X ) = b 0 A (X ) ; b 0 = 1
3

( 33 − 2N fl ) > 0

A (X ) = 1 + a 1 X + a 2 X 2 + bR 2 (X ) ; a n = b n / b 0

bR 2 = ( b 0 ) −1 R 2 ; bR 2 (X ) = o (X 2 )

(264)

The rescaling by ( b 0 ) −1 is universal to all three terms on the right hand side of the ex pression for s

in eq. 262 yielding

s = ( b 0 ) −1
“

bΣ (X )− bΣ (X µ )
”

bΣ (X ) =
`
X −1

´
∆ 0 A −1 (X ) + ( log X ) ∆ 1 A −1 (X ) − bF 2 (X )

bF 2 (X ) =

Z X

0
d Y (− log Y ) ∆ 2 A −1 ( Y )

(265)

→
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For A −1 we thus have

∆ 0 A −1 (X ) = 1 − a 1 X +
“

( a 1 ) 2 − a 2

”
X 2 +R

(∆ 0 A
−1)

2 (X )

∆ 1 A −1 (X) = a 1 − 2
“

( a 1 ) 2 − a 2

”
X +R

( ∆ 1 A
−1 )

1 (X )

∆ 2 A −1 (X) = 2
“

( a 1 ) 2 − a 2

”
+R

( ∆ 2 A
−1 )

0 (X )

∆ 0 A −1 = A −1 ; R
(.)
n (X ) = o (X n )

(266)

Here we list the three coefficients of the function B ( κ ) = − β( g ) / ( g κ ) [A213-1988]

( eqs. 253 - 254 , 264 ) , to which the present asymptotic expans ion at short distances is restricted, in the

MS renormalization scheme

b 0 = 1
3

`
33 − 2N fl

´

b 1 = 2
3

`
9 × 17 − 19N fl

´

b 2 = 1
54

“
27 × 2857 − 21 × 719N fl + 25 × 13N 2

fl

”

5033 = 7 × 719 , 325 = 25 × 13

(267)

b 3 has been calculated in ref. [A214-1997] . →
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A2-Asy The asymptotic expansion of the sliding scale coupli ng constant

We go back to the expression for bΣ in eq. 265

bΣ (X ) =
`
X −1

´
∆ 0 A −1 (X ) + ( log X ) ∆ 1 A −1 (X ) − bF 2 (X )

bF 2 (X ) =

Z X

0
d Y (− log Y ) ∆ 2 A −1 ( Y )

(268)

and expand successive terms for X → X ց 0 using the asymptotic expressions in eq. 266

asy 1 = X −1 ∆ 0 A −1 (X ) =

8
>>><
>>>:

`
X −1 − a 1

´
+

“
( a 1 ) 2 − a 2

”
X +

+R
(Asy 1)
1 (X )

asy 2 = ( log X ) ∆ 1 A −1 (X ) =

8
>>><
>>>:

− a 1

`
log

`
X −1

´ ´
+

2
“

( a 1 ) 2 − a 2

” `
log

`
X −1

´ ´
X +

+
`

log
`
X −1

´ ´
R

(Asy 2)
1 (X )

Asy 1 = asy 1 + a 1 , Asy 2 = asy 2

R
(Asy 1)
1 = X −1 R

(∆ 0 A
−1)

2 , R
(Asy 2)
1 = −R (∆ 1 A

−1)
1

(269)

→
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The constant − a 1 in the expression ( in red ) for Asy 1 in eq. 269 is not part of the asymptotic short

distance expansion . This is so, because of the two expressions for the quantity denoted bΣ in eq. 265 ,

obtained from twofold partial integrations . This equation is repeated for clarity below

s = ( b 0 ) −1
“

bΣ (X )− bΣ (X µ )
”

bΣ (X ) =
`
X −1

´
∆ 0 A −1 (X ) + ( log X ) ∆ 1 A −1 (X ) − bF 2 (X )

bF 2 (X ) =

Z X

0
d Y (− log Y ) ∆ 2 A −1 ( Y )

(270)

This comes from the inherent representation of the function s as shown in eq. 259 and implies a

redefinition : bΣ → Σ asy

Σ asy (X ) = bΣ (X ) + a 1→

s = ( b 0 ) −1 `
Σ asy (X )− Σ asy (X µ )

´

Σ asy (X ) =
`
X −1

´
∆ 0 A −1 (X ) + a 1 + ( log X ) ∆ 1 A −1 (X ) − bF 2 (X )

(271)

→
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Eq. 269 takes the form

Asy 1 = X −1 ∆ 0 A −1 (X ) + a 1 =

8
>>><
>>>:

X −1 +
“

( a 1 ) 2 − a 2

”
X +

+R
(Asy 1)
1 (X )

Asy 2 = ( log X ) ∆ 1 A −1 (X ) =

8
>>><
>>>:

− a 1

`
log

`
X −1

´ ´
+

2
“

( a 1 ) 2 − a 2

” `
log

`
X −1

´ ´
X +

+
`

log
`
X −1

´ ´
R

(Asy 2)
1 (X )

R
(Asy 1)
1 = X −1 R

(∆ 0 A
−1)

2 , R
(Asy 2)
1 = −R (∆ 1 A

−1)
1

(272)

while →
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the short distance expansion for Σ asy (X ) for X → X ց 0 becomes

Σ asy (X ) = Asy 12 (X ) − bF 2 (X ) ; Asy 12 = Asy 1 + Asy 2

Asy 12 =

8
>>><
>>>:

X −1 − a 1

`
log

`
X −1

´ ´
+

“
( a 1 ) 2 − a 2

”
X + 2

“
( a 1 ) 2 − a 2

” `
log

`
X −1

´ ´
X +

+R asy

R asy =

8
<
:

X −1 R
(∆ 0 A

−1)
2 −

`
log

`
X −1

´ ´
R

(∆ 1 A
−1)

1

→ o
ˆ `

log
`
X −1

´ ´
X 2

˜
+ o

ˆ
X 2

˜

bF 2 (X ) =

Z X

0
d Y (− log Y ) ∆ 2 A −1 ( Y )

(273)

We make explicit the entire power series making up the functi ons shown in eq. 266 →
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and the corresponding remainders

∆ 0 A −1 (X ) ∼ P
n=0 ∞ I n X n

∆ 1 A −1 (X ) ∼ − P ∞
n=1 n I n X

n−1

∆ 2 A −1 (X ) ∼ P ∞
n=2 n ( n − 1 ) I n X n−2 −→

R
(∆ 0 A

−1)
2 ∼ P ∞

m=3 Im X m

R
(∆ 1 A

−1)
1 ∼ − P ∞

m=2 (m + 1 ) Im+1 X m

R
(∆ 2 A

−1)
0 ∼ P ∞

m=1 (m + 1 ) (m + 2 ) Im+2 X m

(274)

The combinations of remainders in the expression for R asy in eq. 273 become

X −1 R
(∆ 0 A

−1)
2 ∼ P ∞

m=2 Im+1 X m

−
`

log
`
X −1

´ ´
R

(∆ 1 A
−1)

1 ∼ P ∞
m=2 (m + 1 ) Im+1 X m log

`
X −1

´(275)

→
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From eq. 275 it follows

R asy ∼
P ∞

m=2 Im+1 X m−1
ˆ
(m + 1 ) log

`
X −1

´
X + X

˜
(276)

and from eq. 266

I 0 = 1 , I 1 = − a 1 , I 2 =
“

( a 1 ) 2 − a 2

”
→

I n+1 X n−1
ˆ
( n + 1 ) log

`
X −1

´
X + X

˜ ˛̨
n=1

=

=

8
<
:

“
( a 1 ) 2 − a 2

”
×

×
`

2 log
`
X −1

´
X + X

´

(277)

We substitute eq. 277 int the expression for Asy 12 in eq. 273

Asy 12 ∼

8
<
:

X −1 − a 1

`
log

`
X −1

´ ´
+

+
P ∞

m=1 Im+1 X m−1
ˆ
(m + 1 ) log

`
X −1

´
X + X

˜(278)

The symbol ∼ in eqs. 274 - 278 indicates that the infinite sums are understo od as asymptotic

expansions . →

– p. 144



A2-21

Next we expand bF 2 in eq. 273

bF 2 (X ) =

Z X

0
d Y (− log Y ) ∆ 2 A −1 ( Y )

∼ P ∞
n=0 ( n + 1 ) ( n + 2 ) I n+2 ( J n (X ) )

J n (X ) =

Z X

0
d Y (− log Y ) Y n = ∂ ǫ

Z X

0
d Y Y n−ε

˛̨
˛̨
ε=0

(279)

The integral in the ε extension in eq. 279 converges for small small ε
Z X

0
d Y Y n−ε = X n + 1 − ε / (n + 1 − ε ) = X n+1 X − ε / (n + 1 − ε )

∂ ε

Z X

0
d Y Y n−ε =

8
<
:

X n + 1 − ε / ( n + 1 − ε )×

×
ˆ `

log
`
X −1

´ ´
+ ( n + 1 − ε ) −1

˜ →

J n (X ) = X n / ( n + 1 ) 2
ˆ
( n + 1 ) log

`
X −1

´
X + X

˜

(280)

In order to compare the index n of asymptotic expressions in e qs. 279 - 280 with m in eq. 278 we

substitute n = m − 1 , →
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whereupon eq. 280 yields
Z X

0
d Y Y m−1−ε = X m − ε / (m − ε ) = X m X − ε / (m − ε )

∂ ε

Z X

0
d Y Y m−1−ε =

8
<
:

X m − ε / (m − ε )×

×
ˆ `

log
`
X −1

´ ´
+ (m − ε ) −1

˜ →

Jm−1 (X ) = X m−1 / m 2
ˆ
m log

`
X −1

´
X + X

˜

(281)

and the asymptotic expansion for bF 2 in eq. 279 becomes

bF 2 (X ) =

Z X

0
d Y (− log Y ) ∆ 2 A −1 ( Y )

∼ P ∞
m=1 (m ) (m + 1 ) Im+1 ( Jm−1 (X ) )

∼ P ∞
m=1 Im+1 ( (m + 1 ) / m ) X m−1

ˆ
m log

`
X −1

´
X + X

˜

(282)

→
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We rename the various parts composing Σ asy in eq. 273

Σ asy (X ) = Asy 12 (X ) − bF 2 (X )

= σ asy (X ) + R σ (X )

σ asy (X ) = X −1 − a 1 log
`
X −1

´

R σ (X ) = − σ asy (X ) + Asy 12 (X ) − bF 2 (X )

(283)

We collect the expressions for the contributions to Σ asy as given in eq. 283 using eqs. 278 and 282

Asy 12 − σ asy ∼ P ∞
m=1 Im+1 X m−1

ˆ
(m + 1 ) log

`
X −1

´
X + X

˜

bF 2 (X ) ∼ P ∞
m=1 Im+1 X m−1

8
<
:

( (m + 1 ) / m ) ×

×
ˆ
m log

`
X −1

´
X + X

˜

9
=
;

−→ R σ (X ) ∼ − P ∞
m=1 m

−1 Im+1 X m

(284)

It becomes clear that the cancellation of all terms ∝ X m log
`
X −1

´
in the expansion of R σ is

not accidental . →
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Collecting results concerning the asymptotic expansion of the sliding scale coupling constant

We thus arrive at the resulting structure of the running ( inv erse ) coupling constant, setting

Z = b 0 log
`
µ 2 / Λ 2

´
≡ b 0 s ; X = κ µ

Σ asy (X ) = Z ↔ X = X ( Z )

Σ asy (X ) = σ asy (X ) + R σ (X )

σ asy = X −1 − a 1 log (X −1 ) ; R σ (X ) ∼ − P ∞
m=1 m

−1 Im+1 X m

for µ , Z, , X −1 → ∞ and Λ fixed

I 0 = 1 , I 1 = − a 1 , I 2 =
“

( a 1 ) 2 − a 2

”

am = bm / b 0 , m = 1, 2, · · ·

(285)

In eq. 285 we substituted material contained in eqs. 270 - 284 .

The definitions of the functions β , B = b 0 A , A , A −1 are collected below .

We repeat and complete eq. 253 using eq. 264 →
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s = 2 t = log
h

( µ / µ ) 2
i

κ = g 2 /
`

16 π 2
´

and κ → κ generic κ → X , Y

s = F ( κ ) − F ( κ µ ) ; κ µ = g 2
µ /

`
16 π 2

´

F (X ) =

Z X 0

X

`
d Y / Y 2

´
(B ( Y ) ) −1

β ( y ) = − y b ( y 2 ) ; B ( Y ) = b ( y 2 ) / Y ↔ Y = y 2 /
`

16 π 2
´

−→

8
>>>>>>>>>><
>>>>>>>>>>:

B (X ) = b 0 A (X ) ; b 0 = 1
3

( 33 − 2N fl ) > 0

B (X ) ∼ P ∞
m=0 bm X m

A (X ) ∼ P ∞
m=0 am X m ; am = bm / b 0

A −1 (X ) ∼ P ∞
m=0 Im X m

a 0 = I 0 = 1 , I 1 = − a 1 , · · ·

(286)

A recent 4-loop approximated evaluation has been performed by S. Bethke [A215-2009] →
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Fig A21 : α s (Q ) = 4π κ µ = Q from ref. [A215-2009] .
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Back to the asymptotic expansion of the sliding scale coupli ng constant

We take up eq. 285 and invert the functional relation

Σ asy (X ) = Z ↔ X = X ( Z )

Z = b 0 log
`
µ 2 / Λ 2

´
≡ b 0 s

Σ asy (X ) = σ asy (X ) + R σ (X )

σ asy = X −1 − a 1 log (X −1 ) ; R σ (X ) ∼ − P ∞
m=1 m

−1 Im+1 X m

(287)

in the form suitable for successive approximations

X −1 = Z + a 1 log (X −1 ) − R σ (X ) = Z + f (X ) −→

f (X ) ∼ a 1 log (X −1 ) +
P ∞

m=1 m
−1 Im+1 X m

1 / X ν+1 ( Z ) = Z + f (X ν ( Z ) )

starting with the substitution for ν = 0 : f (X ν=0 ( Z ) ) = 0

(288)

In the successive approximation procedure furthermore the function f (X ··· ) can be evaluated in

various suitable approximations . →
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We first give the two diverging terms for Z → ∞ keeping only the first term in

f ≈ f (1) = a 1 log (X −1 )

1 / X
(0)
ν=1 ( Z ) = Z

1 / X
(1)
ν=2 = Z + a 1 log [ Z ] = b 0 s + a 1 log [ b 0 s ]

· · · a 1 = b 1 / b 0

f → f (̺) (X ) with f (1) (X ) = a 1 log (X −1 )

(289)

The above diverging terms for Z → ∞ entail the universal character of the first two coefficients

– b 0 , b 1 – of the β − function in any renormalization scheme .

While the above path of successive approximations may not be optimally converging whence extended

to terms vanishing for Z → ∞ , these emerge as a double sequence

1 / X
(̺)
ν+1 ( Z ) = Z + f (̺)

“
X

(≤̺)
ν ( Z )

”
(290)

We are here not interested in a high level of precision of the a pproximations, only illustrating within the

perturbatively accessible region of QCD the structure of as ymptotic expansions. For the evaluations

involving the first four orders ( in X ) of the beta-function I r efer to ref. [A215-2009] . →
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For the purpose of illustration we give the next approximati on corresponding to ν = 3 , (̺) = 1

1 / X
(̺)=1
ν=3 ( Z ) = Z + a 1 log [ Z + a 1 log [ Z ] ]

= Z + a 1 log [ Z ] + a 1 log
ˆ
1 + a 1 Z −1 log [ Z ]

˜

∼ Z + a 1 log [ Z ] + a 2
1 Z

−1 log [ Z ] + o
`
Z −1 log Z

´

(291)

The third term in the third line of eq. 291 is the first of its kin d vanishing for Z → +∞ .

A2-mass Quark mass renormalization transposed to quark bil inear operator insertion : q c q c : | 0
and renormalization using QCD with exactly vanishing quark mass(es)

A well known problem of electron mass - and analogously quark mass induced effects goes back to the

general operator product expansion discussed by K. Wilson [ A216-1969] in the light of QED and the

renormalization group equation as specifically formulated by M. Gell-Mann and F. Low [A217-1954] and

extended to QCD . →

– p. 153



A2-30

We rescale the renormalization group equation relative to i ts conventional form in eq. 245

0
BBB@

µ 2 ∂ 2
µ +

`
− κ 2 B

´
∂ κ

− κ Γm α m α ∂m α

− γ 3( η ∂ η ) − Γ J O

1
CCCA C

T (Π)
J O

`
z ; µ 2 , κ , m β , η

´
= 0

8
>>>>>><
>>>>>>:

κ B ( κ ) = − β ( g ) / g

Γm β
( κ ) = 1

2
γm β

Γ J O ( κ , ( η ) ) = 1
2
γ J O

γ 3 ( κ , η ) ≡ γ 3 ( g 2 , η )

9
>>>>>>=
>>>>>>;

= µ 2 ∂ µ 2

8
>>>>>>><
>>>>>>>:

2 log
“

( Z 3 ) 3/2 ( Z 1 ) −1
”

Zm β

log
`
Z O / Z 2

J

´

2 log ( Z 3 ) 1/2

9
>>>>>>>=
>>>>>>>;

κ = α s / ( 4π ) = g 2 / ( 16π 2 )

(292)

In the MS scheme – and ignoring the precise form of normal orderings – or rather following the most

thoughtful suggestion of S. Weinberg [A218-1973] →
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the mass rescaling functions Γ β → Γm become independent of quark flavor β and of the quark

masses [A219-1982] , [A220-1994]

Γm β
→ Γm ≡ κ Gm

Gm = g 0 + g 1 κ + · · · ∼ P ∞
n=0 g n κ

n

g 0 = 4 , g 1 = 2
9

`
101 − 10N fl

´

g 2 = 1249 −

2
64

2216

27

+
160

3

ζ (3)

3
75 N fl −

140

81

N 2
fl

· · ·

(293)

The pertinent rearrangement of normal orderings and of reno rmalizatiun group invariant quantities to

five loop order has been carried out in ref. [A221-2006] .

The obstacles thus outlined and surpassed the sliding scale quark mass function(s) inherit universality

and perturbative accessibility equal to the sliding scale coupling constant .

We are led to consider the pair of rescaling equations →
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using the same notations as defined in eq. 253

s = 2 t = log
h

( µ / µ ) 2
i

κ = g 2 /
`

16 π 2
´

generic

8
<
:

κ

κ

9
=
; →

8
<
:

X , Y

X , Y

9
=
;

Gm → G

m q → m generic

8
<
:

m

m

9
=
; →

8
<
:

m ( µ ) → m 0

m ( s ; m 0 )

9
=
;

−→
d

d s

8
<
:

X

m

9
=
; = −

8
<
:

X
2
B

`
X

´

X G
`
X

´
m

9
=
;

(294)

It is obvious that the universal sliding scale mass function cannot be cal culated also in the perturbatively

accessible region using any version of a quark mass dependent propagator . This makes comparison

with data , where quark mass dependent thresholds of hadrons appear, which depend even

nonperturbatively on quark masses, a step more remote – yet n ot impossible – . This said we proceed →

– p. 156



A2-33

to solve the differential equations as defined in eq. 294 but u sing the results already established for the

sliding scale coupling constant in the last subsection. Thu s we introduce the dimensionless quark mass

function

f ( Y ) = log

2
64

m

m 0

3
75 ; Y → X(295)

f still depends through the initial conditions on the a priori arbitrary scale µ , which is however

replaced by – an appropriate multiple of – the renormalizati on group invariant scale Λ in a way related to

the asymptotic expansion of the running coupling constant .

The function f defined in eq. 295 satisfies the differential equation

d

d Y

f ( Y ) = Q ( Y ) ; Q = Y −1
G ( Y )

B ( Y )

G = g 0 H , B = b 0 A

(296)

which can be integrated →
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yielding the initial value dependent relation

f
`
X

´
− f (X 0 ) =

g 0

b 0

Z X

X 0

d Y

Y

Q red ( Y )

Q red = H ( Y ) / A ( Y ) ∼ P ∞
n=0 q n Y

n ; q 0 = 1

(297)

We proceed the same way as in the asymptotic expansion of the c oupling constant as collected in eq.

286 , integrating the first term in the expansion of the reduce d function Q red in eq. 297

1

Y

Q red =
1

Y

+ R 1

`
Y −1 Q red

´

R 1 → R Q ; R Q ∼
P ∞

n=1 q n Y
n−1

q 1 =
g 1

g 0

−
b 1

b 0

, q 2 · · ·

(298)

Thus eq. 297 →
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becomes, anchoring the integrals of R Q at X = 0

Z X

0
R Q ( Y ) d Y ≡ M (X )

f
`
X

´
− f (X 0 ) =

g 0

b 0

ˆ
log

`
X

´
+ M

`
X

´
− log (X 0 ) − M (X 0 )

˜

M
`
X

´
∼ P ∞

n=1

1

n

q n
`
X

´ n

remembering f ( Y ) = log

2
64

m

m 0

3
75 ; Y → X , X 0

(299)

We note the values of the critical mass rescaling exponent – d enoted cmar – for N fl = 3 to 6

cmar (N fl ) =
g 0

b 0

=
4× 3

33 − 2N fl

(300)

→
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N fL 3 4 5 6

cmar 4 / 9 ∼ 0.44 12 / 25 = 0.48 12 / 23 ∼ 0.52 4 / 7 ∼ 0.57

−→ 0.4 < cmar < 0.6 for 3 ≤ N fl ≤ 6

(301)

We rewrite eq. 299 separating variables

log

2
64

m

m ∗

3
75 − cmar

ˆ
log

`
X

´
+ M

`
X

´ ˜
=

= log

2
64

m 0

m ∗

3
75 − cmar [ log (X 0 ) + M (X 0 ) ]

(302)

The reference mass denoted m ∗ in eq. 302 is completely arbitrary , yet we restrict it to be

renormalization group invariant .

Next we exponentiate both sides of eq. 302 →
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m

m ∗

h `
X

´ − c mar
i
EM

`
X

´
=

=
m 0

m ∗

h
(X 0 ) − c mar

i
EM (X 0 )

EM (X ) = exp [− cmar M (X ) ]

M (X ) :

8
>>>><
>>>>:

universal , quark mass independent function

∼ P ∞
n=1

1

n

q n (X ) n in perturbatively accessible region

ց

EM (X ) = 1 + R EM (X ) :

8
>>><
>>>:

universal , quark mass independent function

R EM ∼ P ∞
n=1 g EM n (X ) n

in perturbatively accessible region

g EM 1 = − cmar q 1 , · · ·

(303)

→
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We collect the expressions composing g EM 1 in the last relation of eq. 303 below, using eqs.

267 ( b 0 , b 1 ) , 293 ( g 0 , g 1 ) , 298 ( q 1 ) , 300 and 301 ( cmar )

g EM 1 = − cmar q 1 ; cmar (N fl ) = =
g 0

b 0

=
4× 3

33 − 2N fl

q 1 =
g 1

g 0

−
b 1

b 0

;

b 0 = 1
3

`
33 − 2N fl

´

b 1 = 2
3

`
9 × 17 − 19N fl

´ ,
g 0 = 4

g 1 = 2
9

`
101 − 10N fl

´

(304)

We evaluate the ratios forming the expresion for g EM 1 in eq. 304 only for N fl = 3 and 5 and also

neglect all g EM n>1 for simplicity and to show the structural effects in a cohere nt way, leaving

subsequent systematic approximations aside . The latter include heavy flavor matching if we go deep

enough inside the region of perturbative accessibility . →
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N fl = 3, 5 : cmar = 4
9
, 12

238
<
:

b 0 = 9 , 23
3

g 0 = 4 , 4

b 1 = 64 , 116
3

g 1 = 142
9

, 34
3

(305)

It follows

cmar = 4
9
, 12

23
,

g 1

g 0

= 71
18
, 17

6
,

b 1

b 0

= 64
9
, 116

23

q 1 = − 19
6
, − 305

138

g EM 1 = − cmar q 1 = 38
27
∼ 1.41 , 610

23∗23 ∼ 1.15

(306)

Universal quark mass rescaling – strengths and limits

With the criteria layed out in the last subsection we cast eq. 303 into the form

m = m 0

EM (X 0 )

(X 0 ) c mar

`
X

´ c mar

EM
`
X

´(307)

→
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It is here important to maintain clarity of notions and I repe at the generic form of the function

EM (X ) in eq. 303 below , using the values og the first two sets of renor malization coefficients for

N fl = 3 in eq. 306

EM (X ) = exp [− cmar M (X ) ]

M (X ) :

8
>>>><
>>>>:

universal , quark mass independent function

∼ P ∞
n=1

1

n

q n (X ) n in perturbatively accessible region

ց

EM (X ) = 1 + R EM (X ) :

8
>>><
>>>:

universal , quark mass independent function

R EM ∼ P ∞
n=1 g EM n (X ) n

in perturbatively accessible region

g EM 1 = − cmar q 1 , · · ·

N fl = 3 : cmar = 4
9

; g EM 1 = − cmar q 1 = 38
27

, q 1 = − 19
6

N fl = 5 : cmar = 12
23

; g EM 1 = − cmar q 1 = 610
529

, q 1 = − 305
138

(308)

→
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After an apparent detour we separate the universal repsonse function in the

’deep euclidean ↔ perturbatively accessible’ rescaling function of mass ver sus coupling constant and

thus versus scale in the following way

m

m ∗
= exp

0
B@− cmar

2
64 log

1

X

− M (X )

3
75

1
CA

M (X ) ∼ P ∞
n=1

1

n

q n (X ) n

(309)

The sliding scale is related to the coupling constant in eq. 2 85 reproduced below

Z = b 0 log
`
µ 2 / Λ 2

´
≡ b 0 s ; X = κ µ

Σ asy (X ) = Z ↔ X = X ( Z )

Σ asy (X ) = σ asy (X ) + R σ (X )

σ asy = X −1 − a 1 log (X −1 ) ; R σ (X ) ∼ − P ∞
m=1 m

−1 Im+1 X m

(310)

→
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The adopted two loop or second order approximation eqs. 309 a nd 310 amounts ( for N fl = 3 ) to the

substitutions

M (X ) ∼ q 1 X = − 19
6
X

Z ∼ X −1 − a 1 log (X −1 ) −→

X −1 ∼ Z + a 1 log Z

q 1 = − 19
6
, − 305

138
, a 1 = 64

9
, 116

23

(311)

Eqs. 309 , 310 become

m

m ∗
∼ exp

0
B@− cmar

2
64 log

1

X

− q 1 X

3
75

1
CA

Z = b 0 log
`
µ 2 / Λ 2

´
∼ X

−1 − a 1 log
“
X

−1
”

N fl = 3 : b 0 = 9 , cmar = 4
9
, q 1 = − 19

6
, a 1 = 64

9

N fl = 5 : b 0 = 23
3
, cmar = 12

23
, q 1 = − 305

138
, a 1 = 116

23

(312)

We proceed to transform the second relation in eq. 312 →
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anchoring the mass scale at µ ∗ = 1 GeV and normalizing the running strong coupling constant

(square) relative to α s = 4 π X

Z = 2 b 0

2
64 log

µ

µ ∗
+ A

3
75 ; EA ≡ e A =

µ ∗

Λ

; µ ∗ = 1 GeV

X =
α s

4 π

and generic X → X , α s → α s

log

2
64

µ

µ ∗
+ A

3
75 ∼

0
B@

2 π

b 0

1
CA ( α s ) −1 −

a 1

2 b 0

log

0
B@

4 π

α s

1
CA

(313)

We first show three figures : (1) repeating Fig A21 , (2) Fig A22 : comparing with the two loop

approximate rescaling with the four loop based α s (Q ) on Fig A21 from ref. [A215-2009] , (3) Fig A23 :

universally rescaled running quark masses with unspecified reference scale m ∗ and fixed ratios

m d : 1
2

(m d + m u ) : m u = 5 : 4 : 3 .

More detailed description of these three figures is given sub sequently . →
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Fig A21 : α s (Q ) = 4π κ µ = Q from ref. [A215-2009] .
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To Fig A21 : In the four loop evaluation of the running couplin g constant in ref. [A215-2009] the

renormalization group invariant quantity is obtained in th e MS renormalization scheme

Λ
(4)
5 = 213 ± 9 MeV ←→ α s (m Z ) = 0.1184 ± 0.0007

λ
(4)
5 = 213 MeV →

8
<
:

Λ
(4)
4 = 296 MeV

Λ
(4)
3 = 338 MeV

(314)

The matching between N fl = 5 → 4 → 3 in ref. [A215-2009] involves the modeling of the

b- and c-flavor associated thresholds through the perturbat ively assigned b- and c-quark pole-

masses m b = 4.7 GeV , m c = 1.5 GeV . This is a nonuniversal way to rescale quark

masses , and thus does not follow the strict quark mass rescal ing at zero quark mass , used here .

As a comparison in determining up and down quark masses at an MS scale of 2 GeV ,

Dominguez, Nasrallah, R öntsch and Schilcher [A223-2008] use

Λ
(4)
3 = 381 ± 16 MeV ↔ α s(m τ ) = 0.344 ± 0.009(315)

and adopting the scheme of quark mass rescaling at zero mass o btain for the u,d,s quark mass

ratios

m u : 1
2

(m d + m u ) : m d : m s

2.9 ± 0.2 : 4.1 ± 0.2 : 5.3 ± 0.5 : 102 ± 8
(316)

→
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To Fig A22 : The following value was used : α s (M Z ) = 0.184 corresponding – for the two loop

running as defined in eq. 311 – to Λ
(2)
5 ∼ 408 MeV . The so determined running coupling

constant is compared with the 1 - σ limits of the same quantity as determined in 4 loop order in

ref. [A215-2009] confirming the validity of the two loop appr oximation in the range

10 GeV ≤ Q ≤ 200 GeV within the accuracy claimed in ref. [A215-2009] .

To Fig A23 : Here the strength and weakness of the mass rescali ng at zro mass within the

perturbatively accessible region is illustrated using as a guide only the ratio of u,d quark masses

m u : 1
2

(m d + m u ) : m d

3 : 4 : 5
(317)

It seems appropriate to me to refer to the in principle approach of rescaling in a universal way the

coupling constant and quark masses initially restricting all analysis to the perturbatively

accessible region , citing (adapting) the pertinent commen t by Murray Gell-Mann :

’Rising when last (first) seen .’

On the other hand the progress achieved in transgressing the perturbatively accessible region ,

using universal mass rescaling , in refs. [A223-2008] , [A22 1-2006] and references cited therein, is

significant, based on improved treatment of finite energy sum rules pioneered by Shifman ,

Vainshtain and Zakharov [A224-1979] . →

– p. 172
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To Fig A23 continued : It is worth noting that the value of the gauge boson condensa te, found in ref.

[A223-2008] , approximated as

〈Ω | α s
π

: F A
µν F

µν A : |Ω 〉 → 0.06 GeV 4(318)

is 5 times larger , than its original estimate in ref. [A224-1 979] .

The basics of chiral expansions in assessing ratios of the u, d,s quark masses continue to provide

additional benchmarks at low hadron energies [A225-2001] a nd references cited therein, while fine

details of these ratios can be subject to improvement . Final ly the validity of chiral expansions as

guidelines for lattice calculations present another strategy in principle [A226-2008] .

We add here a few representative determination of α s (m Z )

α s (m Z ) processes source authors

0.1176 ± 0.0020 average [A227-2008] PDG

0.1172 ± 0.0022 thrust distributions at LEP [A228-2008] Becher , Schwartz

0.1184 ± 0.0007 average [A215-2009] Bethke

(319)
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